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This paper describes the efforts in the development of new adjoint-based techniques for
the design of supersonic aircraft that must match a target equivalent area distribution at
constant lift coefficients. This specific approach is meant to be part of a larger effort to
create multidisciplinary analysis and optimization capabilities that can be used to design
low-boom supersonic aircraft with adequate aerodynamic and structural performance. The
paper focuses on the description of an inverse equivalent area distribution capability that
includes the flow analysis, the formulation and implementation of an adjoint solver for the
equivalent area distribution, and the shape design process of a trijet supersonic aircraft.
This shape design effort is challenging due to three factors: the complexity of the geometric
details involved that require a full unstructured flow and adjoint solver methodology, the
apriori grid adaptation process needed for capturing the shock and expansion waves in the
near-field (without the need for additional mesh adaptation), and the selected objective
function for the calculation of sensitivities and the ultimate application in aircraft design.
The viability of our approach is demonstrated with some preliminary examples. Ongoing
work is targeting actual configurations that can result in an actual low-boom aircraft.

I. Introduction

As part of the NASA Supersonics Project N+2 effort, Stanford University has developed an adjoint-based
capability for the inverse shape design of supersonic configurations that must match a target equivalent area
distribution (chosen for its beneficial ground-boom properties). The long-term intent is to incorporate such
a capability into a generic multi-disciplinary analysis and optimization (MDAO) framework that, in addition
to aerodynamic performance and sonic-boom considerations, incorporates other important aspects of the
design in order to reach a balanced, realizable, low-boom aircraft.

The work described in this article includes the derivation, implementation, and testing of an adjoint
solver that is able to produce sensitivities (gradients) of cost functions derived from the aircraft equivalent
area distribution with respect to arbitrary numbers of design variables that parameterize its shape. Owing
to the properties of adjoint solvers, the entire vector of sensitivities (the gradient) can be obtained with a
single flow solution followed by a single adjoint solution, thus leading to large computational efficiencies.

A schematic view of our approach to low-boom shape design is depicted in Fig. 1 below. This Figure
emphasizes that the low-boom shape design module consists of various components that must be integrated
themselves, prior to full integration with a true MDAO environment. In particular, geometries need to be
created and modified for design purposes, meshes must be deformed during the optimization procedure,
flow and adjoint solutions must be calculated (according to a new formulation described in this article) and
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gradients must be computed in order to supply them to the optimization procedure. In particular, this
article focuses on:

• The description of our geometry treatment (using both a parametric CAD approach and a free-form
deformation box approach),

• The mesh deformation algorithm (based on the work of Campbell) in order to resolve the near-field
pressure distribution accurately,

• The formulation of the adjoint solver for low-boom design (based on cost functions related to the
equivalent area distribution), and

• The results of various demonstration optimization runs that we have been pursuing and that leverage
all other components.

Figure 1. Overall Approach to Supersonic Low-Boom Shape Optimization

Various approaches to low-boom design have been followed in the past, starting from the pioneering work
of Seebass, George, and Darden1 to more recent work by other researchers.2 A historical overview of such
efforts can be found in.3 An approach that is followed in this work is to rely on the construction (by other
means available) of a target equivalent area distribution that is known to translate into acceptable ground-
boom signatures. Once that target equivalent area distribution is available, it is possible to ask the question
of which aircraft shape (volume and lift distribution) is needed to achieve that target area distribution.
Efficient methodologies for such inverse design problems are the focus of this paper. Since CFD methods
are likely to be used in the inverse design problem, an alternative approach would be to simply design the
shape of the aircraft that leads to a near-field pressure distribution (that is known to translate into a ground
boom signature with acceptable behavior). Both approaches have their merits and difficulties, but those are
not elaborated further in this work. The reader is referred to3 for additional references and more details of
the pros and cons.

II. Parametric CAD Geometry Interface: pyCAPRI

Ideally, the designer would like optimization to be performed directly on variables that are convenient
for design, here referred to as parametric variables. The sweep of a wing section or the width of the fuselage
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at a given station are examples of parametric variables. These are distinguished from other design variables
in that a change in their value results in a change of the parametric geometry throughout the model and
not just in a local change to a given node or cell of a computational model. Hence, changing a parametric
variable requires that the model geometry be regenerated (to use CAD terminology) or recomputed from
the current parametric inputs via interaction with the relevant software.

In order to compute the sensitivity of the performance metrics of interest (derived from the computed
equivalent area distributions) using CFD analysis, the following general procedure must be reliably performed
for a given vector of design variables, ~x:

1. Geometry generated for ~x, G(~x)

2. Surface mesh created and analysis conducted for G(~x)

3. Geometry perturbed about G(~x) for each xi of interest

4. Recreate or deform the surface mesh to obtain δGi

5. Compute the sensitivities in the coordinates of the surface mesh corresponding to δGi, ∂~r/∂xi.

With the sensitivities of the surface mesh to the geometry known, the sensitivities of the performance with
respect to the parametric geometry can be found by combining these results in the appropriate way with the
sensitivities of the performance with respect to the motion of the surface mesh. Assuming that the sensitivity
of a performance metric, J (in our case, related to an aircraft equivalent area distribution), is known with
respect to the position of a surface node, rj , the parametric sensitivity of the performance metric, J , with
respect to the parametric design variable i can be found via a dot product (chain rule),

∂J

∂xi
=
∂~rj
∂xi

∂J

∂~rj
=
∂xj
∂xi

(
∂J

∂xi

)
+
∂yj
∂xi

(
∂J

∂yj

)
+
∂zj
∂xi

(
∂J

∂zj

)
(1)

Note that x is used in this context both as a Cartesian spatial coordinate (x, y, z) and as the vector of
design variables (~x). In a later section of this article, the analytical tools to compute the sensitivities of the
performance metric to the position of a surface node are discussed (which we will call surface sensitivities);
here we discuss the tools developed to compute ∂~r/∂xi for an arbitrary parametric solid or surface model.

Note also that, in this description, we compute the sensitivity of the location of a surface point in the
model to changes in the parametric shape variables using a process of finite differencing. In general, and
in order to minimize the number of CAD regenerations, it would be desirable to obtain these sensitivities
analytically. While existing CAD packages do not provide such analytic sensitivities, efforts by Haimes are
attempting to automate this process and a package that may be incorporated into this methodology will be
available in the near future.

CAPRI was chosen as the basis for development of a geometry interface. CAPRI is a CAD-neutral
software interface developed by Haimes4 with a wide range of functionality for querying, modifying, and
regenerating CAD models. In order to make CAPRI platform independent and compatible with the current
and future framework, a Python interface was required and was developed as part of this work. In addition,
multithreaded (locally parallel) execution of query commands involving the entire surface mesh was required
to accelerate the performance of surface mesh regeneration. pyCAPRI is an implementation of CAPRI in
Python which utilizes the NumPy high-performance Python array functionality. Internally, a combination
of C++ and Fortran 90 code interfacing to the CAPRI API is wrapped in Python and exposed to the user
as a single module. Parallelization is currently achieved through OpenMP.

pyCAPRI has been tested both with simple geometries and a few of the surface meshes used in this
study for full vehicle configurations. Fig. 2 shows three variations of an SST solid geometry, varying only
two parameters for visualization purposes (one of several fuselage thicknesses and the sweep of the leading
edge / fuselage intersection). pyCAPRI itself is a general tool for the analysis involving parametric CAD
models that is being applied to this work to determine spatial perturbations described in the steps above.
Specifically, the perturbation of the surface mesh is achieved through a mapping to local surface parametric
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coordinates (u, v) which are preserved through a regeneration of a model for small changes x = x+ δx. The
algorithm is summarized below:

1. Create a surface mesh corresponding to ~x

2. Map the spatial coordinates of the surface mesh to (u, v) surface coordinates in the local surface

3. Regenerate the geometry with the new vector of design variables, x = x+ δx

4. Map the (unchanged) (u, v) coordinates to new spatial coordinates that can be subsequently used for
further analysis

Figure 2. Parametrically varying surface geometry of SST concept vehicle via pyCAPRI API calls from
Python. Note that much of the surface varies significantly though only two of approximately 150 parameters
are varied.

III. A priori anisotropic grid adaptation for sonic-boom simulations

Sonic-boom propagation methods typically rely on the CFD solver to model the strongest nonlinearities in
the flow. Consequently, the near-field pressure signature must be extracted a sufficiently large distance from
the configuration such that the non-axisymmetric effects have largely died down: one or more body lengths
below the aircraft is common. Capturing the pressure signature accurately at these distances is challenging,
because strong shocks can be dissipated by the numerical scheme before they reach the extraction location.

Grid adaptation can be used to reduce numerical dissipation and thereby improve the pressure-signature
accuracy. Using isotropic adaptation based on the solution gradient, Choi et al. found that the number of
nodes required to accurately capture the near-field pressure is of order 107 for a node-based unstructured
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solver. This motivates the use of anisotropic output-based adaptation; indeed, several studies have shown
that the adjoint-weighted residual method coupled with metric-based anisotropic adaptation can reduce the
number of solution degrees of freedom an order of magnitude relative to isotropic adaptation.5,6

While automated a posteriori grid adaptation is attractive for general flows, a priori adaptation can be
more efficient if the locations of critical flow features are well known. A common example is refinement of
the boundary layer in Reynolds-averaged Navier-Stokes simulations. Recently, Campbell et al.7 proposed
a simple, yet remarkably effective a priori mesh adaptation strategy for sonic-boom prediction. Numerical
experiments suggest that their approach produces accurate pressure signatures with order 106 degrees of
freedom, which is comparable to a posteriori output-based adaptation methods. Therefore, for this work we
follow reference7 and use the a priori grid adaptation approach described in the following sections.

A. Radial stretching and conical shearing

The a priori grid adaptation method of Campbell et al.7 consists of two transformations applied to a baseline
grid: (1) a radial stretching to reduce the number of nodes required to reach the near-field analysis location,
and (2) a conical shearing to align the cells with the free-stream Mach angle. These transformations are
described in more detail below.

Applying the stretching and shearing transformation too close to the aircraft may create volume cells
that intersect with the geometry. Consequently, a cylindrical region with its axis parallel to the x-axis is
placed around the configuration, and nodes inside this region are not modified. The sectional shape of the
cylinder is composed of two ellipses with a common spanwise (major) axis length of (1 + ε)b, where b is the
span and ε = 0.1 is a safety margin. The upper and lower ellipses have semi-minor axis lengths of (1+ε)zmax

and (1 + ε)zmax/2, respectively, where zmax denotes the upper bound of z on the geometry.
Stretching in the radial direction procedes as follows. Consider an arbitrary point in cylindrical coordi-

nates x = (x, r, β). Let xcyl = (x, rcyl, β) denote the point where the line through x and (x, 0, β) pierces
the cylinder defining the fixed-node region. Stretching is applied if r > rcyl, in which case the stretched
coordinates are given by xstr = (x, rstr, β) where

rstr = rcyl + λ(r − rcyl),

and λ is the stretching factor. We have used λ = 3 in the present work.
Once a node is stretched radially, it is sheared to align the grid with the Mach cone. As with stretching,

this transformation is applied only to nodes outside the fixed-node cylinder described above. First, the
stretched point xstr and its corresponding xcyl are expressed in a coordinate system that has its x-axis
parallel with the free-stream velocity and its origin at the nose of the configuration. In this new coordinate
system, the Mach cone that xcyl lies on is determined, and xstr is projected onto this Mach cone along the
line parallel to the free-stream.

B. Repairing invalid cells after adaptation

The stretching and shearing transformation may create inverted cells, i.e. cells with negative volumes, par-
ticularly along the boundary of the fixed-node region. To repair these invalid cells, we use the simultaneous
untangling and smoothing procedure proposed by Escobar et al..8 For completeness, we describe this pro-
cedure briefly below.

Let v denote a vertex in the grid and N(v) the local submesh of tetrahedral elements connected to v.
We define an objective function for the node v using a sum of modified quality measures for the elements in
N(v):

Kv =

N(v)∑
m=1

η∗m,

where η∗m is a modified version of the inverse mean ratio:

η∗m =
|Sm|2

3 [h(σm, δ)]
(2/3)

, h(σm, δ) =
1

2

(
σm +

√
σ2
m + 4δ2

)
.
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Here, Sm denotes the nodally-invariant Jacobian matrix of element m. The scalars |Sm| and σm are the
Frobenius norm and determinant of Sm, respectively.

If the parameter δ is set to zero then h = σm, and we recover the usual inverse mean ratio quality
measure, i.e. η∗ → η as δ → 0. However, η is singular for collapsed elements whereas η∗ remains defined for
all elements provided δ > 0. Hence, the role of the function h is to globalize the objective function Kv, so
that we may apply suitable continuous optimization algorithms to minimize Kv.

For each cell that is inverted, we loop through its nodes v and attempt to minimize Kv using a safe-
guarded Newton’s method. Nodes on the surface of the geometry are not permitted to move, and nodes on
the symmetry plane have their y-coordinate held fixed.

We begin the untangling process with δ = 0.1 and decrease δ after each sweep through the inverted cells;
we have found that this iterative process helps keep the objective function Hessian well conditioned during
the first few iterations. All inverted cells are typically removed after three or fewer iterations.

C. Baseline and transformed grids

The baseline grid for this work was created using the StarCCM meshing package, which is based on Delaunay
tetrahedralization. A strength of this software is its ability to precisely define volume, surface, and edge
refinement regions. Volume regions of cells may be sized with sources generated from primitive shapes or
imported shapes from a CAD file. Surfaces may be sized by region by splitting imported surface patches.
Edges may be sized by defining feature curves on which cell edges are forced to snap.

The meshing process is characterized by the following three steps. First, a surface mesh of the aircraft
is imported. Typically the surface is in Parasolid file format, because it provides StarCCM with patch
information useful for splitting the surface into refinement regions. Next, the the aircraft surface is integrated
with the farfield geometry. In the case of external symmetric flow problems like the present study, the surface
is intersected with a symmetry plane. The result of this operation is shown in Fig. 3. Finally, the mesh is
populated with information to control the size of cells in specified locations.

Several regions of the baseline mesh were targeted for refinement. In particular, a volume refinement
source was added below the aircraft to capture the near-field pressure signature in the final transformed grid.
In addition, the surface mesh was refined in regions of high curvature using feature curves. The refinement
achieved around the leading and trailing edges is shown in Fig. 4.

The baseline grid used for this study is shown in Fig. 5(a). For a Mach number of 1.8 and angle of
attack of 3 degrees, the stretching and shearing operations transform the baseline grid into the grid shown
in Fig. 5(b). The anisotropic cells are clearly aligned with the Mach angle.

IV. Surface sensitivities using a continuous adjoint methodology

The objective of this section is to describe the way in which we quantify the influence of geometry
modifications on either the pressure distribution on the trijet surface or at an arbitrary location within the
domain of interest (typically the near-field). Conventional adjoint implementations are typically aimed at
reducing a cost function computed from the pressure distribution on the surface that is being modified. In
our current work, apart from the traditional functionals defined on the airplane surface (drag, lift, etc.), we
will use two objective functions that depend on the near-field pressure distribution: the pressure coefficient
on the near-field,9 and the equivalent area distribution calculated from this pressure distribution.

The fluid domain Ω is bounded by a disconnected boundary δΩ which is divided into a “far field”
component, Γ∞, and a solid wall boundary, S. Ω has been further divided into two subdomains Ωi and
Ωo separated by the near-field boundary Γnf . Note that Γnf will remain fixed throughout the optimization
process, but the solid surface S will change as needed to meet the optimization criteria.

A typical optimization problem seeks the minimization of a certain cost function J with respect to changes
in the shape of the boundary S. We will concentrate on functionals defined as integrals over the solid surface
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Figure 3. Half-body aircraft geometry.

Figure 4. Detail showing surface and symmetry-plane mesh near empennage.

7



Y X

Z

(a) initial grid
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(b) transformed grid

Figure 5. Cells on the symmetry plane of the initial and transformed grids. The inset plots show the shape
of the far-field boundary at the symmetry plane.
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S, and integrals over the near-field boundary Γnf ,

J =

∫
S

~d · (P~nS) ds+

∫
Γnf

1

2
f(x)(P − P∞)2 ds =

∫
S

jS ds+

∫
Γnf

jnf ds, (2)

where P is the value of the pressure, ~nS is a normal vector to the solid surface S, f(x) is a function that

only depends on the spatial coordinates, P∞ is the pressure in the free stream, and ~d is an arbitrary constant
vector that we will define later on. The goal is to compute the variation of the above functional caused by
arbitrary (and multiple) deformations of S.

Upon an infinitesimal deformation δS of the control surface S along the normal direction ~nS , the cost
function varies due to the changes in the solution induced by the deformation:10

δJ =

∫
δS

jS ds+

∫
S

δjS ds+

∫
Γnf

δjnf ds

=

∫
S

(∂njS − 2HmjS)δS ds+

∫
S

~d · (δP~nS + Pδ~nS) ds+

∫
Γnf

∂jnf
∂P

δP ds

=

∫
S

~d · (∂n(P~nS)− 2Hm(P~nS))δS ds+

∫
S

~d · δP~nS ds−
∫
S

~d · P∇S(δS) ds+

∫
Γnf

f(x)(P − P∞)δP ds

=

∫
S

~d · δP~nS ds+

∫
Γnf

f(x)(P − P∞)δP ds+

∫
S

~d · (∂n(P~nS) +∇SP − 2Hm(P~nS)) δS ds

=

∫
S

~d · δP~nS ds+

∫
Γnf

f(x)(P − P∞)δP ds+

∫
S

(~d · ~∇P )δS ds, (3)

where we have used δ~n = −∇S(δS) that holds for small deformations,11 and Hm is the mean curvature of
S computed as (κ1 + κ2)/2, where (κ1, κ2) are curvatures in two orthogonal directions on the surface. Here
∇S represents the tangential gradient operator on S. Note that we have done an integration by parts and
that we have used the gradient operator on local coordinates on S.

Once we are able to evaluate the variation of the objective function, we note that the variation is subject
to the steady Euler flow equations, ~∇ · ~F = 0, where ~F are the convective fluxes. To tackle the variation of
the flow variables δP in the objective function evaluation Eq. 3 we resort to the adjoint state Ψ = (ψ1, ~ϕ, ψ5),
where ~ϕ = (ψ2, ψ3, ψ4). Starting with the linearized form of the Euler’s equations, taking the inner product
with Ψ, and integrating over the domain one gets

0 =

∫
Ω

Ψ(~∇δ ~F ) dΩ =

∫
Ω

Ψ~∇( ~AδU) dΩ =

∫
Ωi

Ψ~∇( ~AδU) dΩ +

∫
Ωo

Ψ~∇( ~AδU) dΩ, (4)

where ~A is the Jacobian of ~F in conservative variables, and the entire domain has been split between the
subdomains Ωi and Ωo. Integrating by parts

0 = −
∫

Ωi

(~∇Ψ) ~AδU dΩi +

∫
S

Ψ
(
~nS ~A

)
δU ds+

∫
Γnf

Ψi

(
~nnf ~A

)
δU ds

−
∫

Ωo

(~∇Ψ) ~AδU dΩo −
∫

Γnf

Ψo

(
~nnf ~A

)
δU ds+

∫
Γ∞

Ψi

(
~n∞ ~A

)
δU ds. (5)

Note that the integral over the far-field can be forced to vanish with the appropriate choice of boundary
conditions, and the integral over the solid boundary S gives∫

S

Ψ
(
~nS ~A

)
δU ds =

∫
S

(~n · δ~v)(ρψ1 + ρ~v · ~ϕ+ ρHψ5) ds+

∫
S

(~n · ~ϕ) δP ds, (6)

where we have used the boundary condition ~v · ~nS = 0 to evaluate the jacobian ~A. To eliminate the
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dependence on ~n · δ~v we will use the linearized boundary condition on the surface S to obtain∫
S

Ψ
(
~nS ~A

)
δU ds = −

∫
S

((δS∂n~v) · ~ns + δ~ns · ~v)(ρψ1 + ρ~v · ~ϕ+ ρHψ5) ds+

∫
S

(~n · ~ϕ) δP ds

= −
∫
S

((δS∂n~v) · ~ns −∇s(δS) · ~v)ϑ ds+

∫
S

(~n · ~ϕ) δP ds

= −
∫
S

((∂n~v · ~ns)ϑ+∇s(~v ϑ)) δS ds+

∫
S

(~n · ~ϕ) δP ds. (7)

To obtain this last expression we have used the linearized boundary conditions, the value of δ~nS at the
surface, and we have also done an integration by parts. On the other hand, the integrals supported on Γnf
can be combined into the single integral ∫

Γnf

∆Ψ
(
~nnf · ~A

)
δU ds, (8)

where ∆Ψ = Ψi − Ψo is the difference between the values of Ψ above and below the near-field boundary.
Finally the domain integrals vanish provided the adjoint equation

~∇Ψ · ~A = ~AT · ~∇Ψ = 0 (9)

is satisfied. And Eq. 4 can be written as

−
∫
S

((∂n~v · ~nS)ϑ+∇S(~v ϑ)) δS ds+

∫
S

(~nS · ~ϕ)δP ds+

∫
Γnf

∆Ψ
(
~nnf ~A

)
δU ds = 0, (10)

where ϑ = (ρψ1 +ρ~v · ~ϕ+ρHψ5). The last step is to subtract Eqs. 3 and 10 to obtain the complete variation
of the functional as:

δJ =

∫
S

~d · δP~nS ds+

∫
Γnf

f(x)(P − P∞)δP ds+

∫
S

(~d · ~∇P )δS ds

+

∫
S

((∂n~v · ~ns)ϑ+∇S(~v ϑ)) δS ds−
∫
S

(~nS · ~ϕ)δP ds−
∫

Γnf

∆Ψ
(
~nnf ~A

)
δU ds

=

∫
S

(~d · ~nS)δP ds−
∫
S

(~nS · ~ϕ)δP ds+

∫
Γnf

f(x)(P − P∞)δP ds−
∫

Γnf

∆Ψ
(
~nnf ~A

)
δU ds

+

∫
S

(
~d · ~∇P + (∂n~v · ~nS)ϑ+∇S(~v ϑ)

)
δS ds, (11)

where we have rearranged the different terms to have a more clear view of those which are involved in the
evaluation of the objective function gradient.

A. Surface and near-field pressure-based functionals

Eq. 11 is the key to evaluate the functional sensitivity with respect to deformations on solid surface S. In
order to do that, we firstly define the vector ~d as

~d =


(

1
C∞

)
(cos α cos β, sin α cos β, sin β), CD Drag coefficient,(

1
C∞

)
(− sin α, cos α, 0), CL Lift coefficient,(

1
C∞

)
(− sin β cos α,− sin β sin α, cos β), CSF Side-force coefficient,

(12)

where α is the angle of attack, β is the angle of sideslip, C∞ = 1
2v

2
∞ρ∞Az, and v∞ and ρ∞ denote the infinity

values of velocity and density. All the positive components of the normal surface vectors in the z-direction
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are summed up in order to calculate the projection Az, but a pre-specified reference area can also be used
in a similar fashion.

The admissible adjoint boundary conditions that eliminates the dependence on the fluid flow variations
are: {

~nS · ~ϕ = ~d · ~nS
~∇Ψ

(
~nnf · ~A

)
= f(x)(P − P∞),

(13)

and the variation of the objective function is

δJ =

∫
S

(
~d · ~∇P + (∂n~v · ~ns)ϑ+∇s(~v ϑ)

)
δS ds (14)

where ∂J
∂S =

(
~d · ~∇P + (∂n~v · ~ns)ϑ+∇s(~v ϑ)

)
is what we have called the surface sensitivity, which provides

a measure of the variation of the objective function with respect to infinitesimal variations of the surface
shape in the direction of the local surface normal. This value is computed at each surface node of the
numerical grid with negligible computational cost: in a typical supersonic aircraft mesh, this involves the
computation of approximately tens of thousands of derivatives at little computational expense. In Fig. 6
and Fig. 7 the surface shape sensitivities for the drag and lift coefficients are shown respectively using the
baseline configuration.

Figure 6. Surface shape sensitivity of the Drag coefficient (baseline configuration).

B. Equivalent Area-based functionals

As we have seen earlier in this article, in optimal shape design problems, continuous adjoint formulations
restrict the form of the objective functions that can be computed in the near-field. Essentially, the variation
of the cost function with respect to the pressure must have the following form so that the appropriate
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Figure 7. Surface shape sensitivity of the Lift coefficient (baseline configuration).

boundary terms are cancelled in the formulation:

δJ =

∫ L

−L
f(x)(P − P∞)δP dx, −L < x < L, (15)

where f(x) is a function that can only depend on the spatial coordinates at the near-field plane. Note that, if
f(x) = 2/ρ∞AU

2
∞ the objective function is just the area integral of the pressure coefficient on the near-field,

where the area within the limits of integration is given by A. Using classical supersonic aerodynamics, we
know that the equivalent area distribution Ae(x; θ) at a particular azimuthal angle θ is given by

Ae(x; θ) =

∫ x

0

C(P − P∞)(x− t)1/2 dt, (16)

where C = 4
√

2βr
γρ∞M2

∞
. In the following we assume that we are on an azimuthal plane θ = θ0 and drop

the dependence of the area distribution on the azimuthal angle θ. In order to pose an inverse design
problem whereby we attempt to match a target equivalent area distribution and, at the same time, satisfy
the requirement expressed by Eq. 15, the logical approach is to formulate the problem using a least-
squares minimization formulation. For purposes of illustration, let’s minimize the weighted sum of the
square of the differences between the computed equivalent area and the target equivalent area at four
different points (x0, x1, x2, x3) in the near field, with weights (ω0, ω1, ω2, ω3), and target equivalent areas
(At(x0), At(x1), At(x2), At(x3)). Obviously, the procedure can be easily extended to an arbitrary number
of such points, thus making it completely general, even for cases where we might be interested in designing
equivalent area distributions at multiple azimuthal planes, θ, as would be the case to avoid simply reducing
the sonic boom under the flight track while the boom intensity increases off the flight track. This is precisely
the way in which our implementation has been carried out.

For this problem formulation, the objective function can be written as:

J = ω1 [Ae(x1)−At(x1)]
2

+ ω2 [Ae(x2)−At(x2)]
2

+ ω3 [Ae(x3)−At(x3)]
2
, (17)
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where we have assumed that Ae(x0) = At(x0) = 0. In order to check if the variation of this objective function
satisfies the requirement in Eq. 15, the variation of Eq. 17 is given by:

δJ = 2ω1 [Ae(x1)−At(x1)] δAe(x1) + 2ω2 [Ae(x2)−At(x2)] δAe(x2)

+ 2ω3 [Ae(x3)−At(x3)] δAe(x3). (18)

On the other hand, the variation of the equivalent area, Ae(x), with respect to the pressure yields:

δAe(x) =

∫ x

0

C(x− t)1/2δP dt. (19)

Using this last expression it is possible to separately evaluate the variation of the non-zero equivalent
areas at the three chosen points as follows:

δAe(x1) =

∫ x1

x0

C(x1 − x)1/2δP dx,

δAe(x2) =

∫ x1

x0

C(x2 − x)1/2δP dx+

∫ x2

x1

C(x2 − x)1/2δP dx,

δAe(x3) =

∫ x1

x0

C(x3 − x)1/2δP dx+

∫ x2

x1

C(x3 − x)1/2δP dx

+

∫ x3

x2

C(x3 − x)1/2δP dx, (20)

where, for the sake of simplicity, we have substituted the dummy variable of integration t by x. Using the
variation of the equivalent area that we have computed in Eq. 18, it is possible to rewrite the variation of
the objective function as:

δJ = 2ω1 [Ae(x1)−At(x1)]

∫ x1

x0

C(x1 − x)1/2δP dx

+ 2ω2 [Ae(x2)−At(x2)]

(∫ x1

x0

C(x2 − x)1/2δP dx+

∫ x2

x1

C(x2 − x)1/2δP dx

)
+ 2ω3 [Ae(x3)−At(x3)]

(∫ x1

x0

C(x3 − x)1/2δP dx+

∫ x2

x1

C(x3 − x)1/2δP dx

+

∫ x3

x2

C(x3 − x)1/2δP dx

)
, (21)

To simplify the notation, we will use:
∆Ae(x1) = 2ω1 [Ae(x1)−At(x1)]C

∆Ae(x2) = 2ω2 [Ae(x2)−At(x2)]C

∆Ae(x3) = 2ω3 [Ae(x3)−At(x3)]C.

Rearranging the integrals in Eq. 21, it is possible to write the variation of the objective function as

δJ =

∫ x1

x0

(
∆Ae(x1)(x1 − x)1/2 + ∆Ae(x2)(x2 − x)1/2 + ∆Ae(x3)(x3 − x)1/2

)
δP dx

+

∫ x2

x1

(
∆Ae(x2)(x2 − x)1/2 + ∆Ae(x3)(x3 − x)1/2

)
δP dx

+

∫ x3

x2

(
∆Ae(x3)(x3 − x)1/2

)
δP dx. (22)
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In conclusion, the inverse equivalent area shape design problem can be reinterpreted as an optimization of a
functional of the near-field pressure distribution with a particular weighting function:

J =

∫ L

−L
f(x)(P − P∞) dx, −L < x < L, (23)

where

f(x) =



0 , if − L < x < x0,

∆Ae(x1)(x1 − x)1/2 + ∆Ae(x2)(x2 − x)1/2 + ∆Ae(x3)(x3 − x)1/2 , if x0 < x < x1

∆Ae(x2)(x2 − x)1/2 + ∆Ae(x3)(x3 − x)1/2 , if x1 < x < x2

∆Ae(x3)(x3 − x)1/2 , if x2 < x < x3,

0 , if x3 < x < L,

and ∆Ae(xi) = 2ωi [Ae(xi)−At(xi)]C as given in Eq. 22, C = 4
√

2βr
γρ∞M2

∞
, and where ω1, ω2, and ω3 are

arbitrary weights chosen by the designer. It is important to note that this formulation of the problem fits
perfectly within a continuous adjoint framework. In addition, a similar procedure can be used to produce a
formulation that is amenable to discrete adjoint methods (with little or no modifications). The application
of this formula to an arbitrary number of points in the near-field is straightforward. Furthermore, this
formula also gives us some clues about how to choose f(x) in a three-dimensional environment, should we
be interested in matching a number of different equivalent area distributions simultaneously at different
azimuthal angles.

1. Sample 2D Equivalent Area Distribution Redesign

Using the L-2 norm of the difference between the computed equivalent area distribution and a pre-specified
target area distribution as a functional on an optimal shape design process requires the imposition of a
jump in the adjoint variables on the near-field plane. In order to do that, the original grid is divided by a
horizontal line (2D) or plane (3D), and the points on the line/plane are duplicated: both planes on either
side of the near field as well as the coordinates of the nodes that lie on them are exactly the same, except
that the connectivity of the elements is altered to allow the imposition of the jump on the adjoint variables.
Given an existing mesh, this process is done automatically with an in-home tool developed for this project.
After the domain division, the jump condition is imposed using the fluxes that connect both domains.

Figure 8. Flow (left), and adjoint (right) solutions for the NACA 4412 and the equivalent area distribution
functional.

To test the complete methodology we have used a simple equivalent area inverse design problem: starting
with a NACA 4412 airfoil, at Mach 2.0 and at an angle of attack of 0.0deg, the objective is to modify the
shape of this airfoil in order to obtain the equivalent area distribution produced by a NACA 0012 airfoil

14



at the same flow conditions. The target equivalent area distribution (for the NACA 0012) is computed in
a pre-processing step and guarantees that the optimal value of the cost function is indeed zero. In other
words, appropriate shape modifications of the starting NACA 4412 can result in a NACA 0012 airfoil that
exactly achieves the target area distribution specified.

This problem is chose as a validation step for our entire equivalent area adjoint formulation: if the
gradients are computed properly and our implementation is correct, then the optimization procedure should
achieve exactly both the shape of the NACA 0012 airfoil and its equivalent area distribution.

In Fig. 8 the flow solution (left) and the adjoint solution (right) for the NACA 4412 are plotted (using
the density and adjoint-of-density variables). The plot for the adjoint variable reflects the regions of the flow
that affect the computation of the cost functional: the L-2 norm of the difference between the computed and
target equivalent area distributions. To reduce the computational cost an apriori-adapted grid is used (see
Fig. 9, left).

Iteration
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Figure 9. A priori adapted numerical grid (left), and optimization evolution using a logarithmic scale (right).

In this problem the near-field is located at one chord length below the airfoil and, as mentioned earlier,
the objective is to recover the equivalent area of a NACA 0012 airfoil. As design variables we have used a
total of 50 Hicks-Henne bump functions distributed along the entire airfoil (upper and lower surfaces), and a
quasi-Newton method is used as the optimizer with gradients computed using the technique described earlier
in this article.

In Fig. 10 the original NACA4412 and the designed airfoil with the area distribution of a NACA0012
are plotted. Finally, in Fig. 9 (right) the optimization history is shown, after 10 iterations we have almost
completely recovered the NACA 0012 equivalent area distribution. It is important to note that, although
the equivalent area distribution is the same as in the NACA0012, the designed airfoil shape differs from
the NACA0012: this is a problem with non-unique solutions. Using gradient-based optimization techniques,
the optimizer has found the closest local minimum to the starting point of the optimization, namely the
NACA4412. If a NACA 0012 airfoil is used as a starting point, the optimizer exits immediately having found
another local minimum in the design space.

The results of this simple optimization problem prove that the gradient information supplied by our
adjoint solver (and boundary conditions) for the equivalent area distributions of the problem are correct and
can be used for more complicated three-dimensional designs.
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Figure 10. Optimization results, geometry and pressure distribution (left), equivalent area distribution, and
near-field pressure (right).

V. Design variable definition and mesh deformation

For these initial results, a Free-Form Deformation (FFD)12 strategy has been adopted, although the
surface shape sensitivities can also be used in conjunction with the pyCAPRI approach described earlier in
this article. In FFD an initial box encapsulating the object (wing, fuselage, etc.) that we want to redesign
is parameterized as a Bézier solid. A set of control points are defined on the surface of the box, the number
of which depends on the order of the chosen Bernstein polynomials. The solid box is parameterized by the
following expression

X(u, v, w) =

l,m,n∑
i,j,k=0

Pi,j,kB
l
i(u)Bmj (v)Bnk (w), (24)

where u, v, w ∈ [0, 1], and the Bi being the Bernstein polynomial of order i. The Cartesian coordinates of
the points on the surface of the object are then transformed into parametric coordinates within the Bézier
box. Control points of the box become design variables, as they control the shape of the solid, and thus the
shape of the surface grid inside. The box enclosing the geometry is then deformed by modifying its control
points, with all the points inside the box inheriting a smooth deformation. Once the deformation has been
applied, the new Cartesian coordinates of the object of interest can be recovered by simply evaluating the
mapping inherent in Eq. 24.

Once the boundary displacements have been computed using the FFD strategy, a classical spring method
is used in order to deform the rest of vertices of the unstructured mesh. The method is based on the definition
of a stiffness matrix, kij , that connects the two ends of a single bar (mesh edge). Equilibrium of forces is
then imposed at each mesh node ∑

j∈Ni

kij~eij~e
T
ij

 ~ui =
∑
j∈Ni

kij~eij~e
T
ij~uj , (25)

where the displacement ~ui is unknown and is computed as a function of the known surface displacements ~uj ,
Ni is the set of neighboring points to node i, and ~eij the unit vector in the direction connecting both points.
The system of equations is solved iteratively by a conjugate gradient algorithm with Jacobi preconditioning.
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Figure 11. Free Form Deformation boxes used in the trijet optimization.

VI. Simulation and shape design framework

The simulations and optimal shape design cases presented in this work have been carried out using the
SU2 suite (Stanford University Unstructured). SU2 is a computational tool for the optimal shape design of
airplanes composed by a collection of software modules (written in C++), and scripts (written in Python).
Next, a brief description of the main software modules is presented:

• SU2 CFD (Computation Fluid Dynamics Code). This is the software for performing the fluid dynamics
simulation. This code is able to solve the direct, continuous adjoint, and linearized problems for the
potential, Euler, Navier-Stokes and RANS equations. It uses a Finite Volume Method formulation, and
an edge-based data structure. The code is fully parallel, explicit/implicit, and it uses an agglomeration
multigrid approach to accelerate the convergence to the steady state.

• SU2 GPC (Gradient Projection Code). This is the software module for computing the partial derivative
of an objective function with respect to variations of the shape of the aerodynamic surface. SU2 GPC
uses the surface sensitivity, the flow solution, and the definition of the geometric variables to evaluate
the derivative of a particular functional.

• SU2 MDC (Mesh Deformation Code). This is the software module for both performing the geometric
deformation of an aerodynamic surface, as well as the volumetric grid deformation. Once the kind
of deformation is defined, SU2 MDC performs the grid deformation using a torsional spring analogy.
To perform the 3D surface deformations a Free Form Deformation method is used. Work is being
completed to also interface SU2 MDC with the pyCAPRI method described earlier, as well as other
choices for surface parameterization.

• SU2 MAC (Mesh Adaptation Code). This is the software module used for grid adaptation using
different techniques based on the analysis of the fluid solution, adjoint solution and linearized problem.
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• SU2 GDC (Geometric Design Code). This is the software module for computing the value of geometric
functional and its gradient that depend exclusively on the geometry of the aircraft.

All these software modules interact with each other using a series of Python scripts that automate the entire
optimization loop.

VII. Shape optimization using Trijet configuration

In this section we conclude the article by presenting examples of aerodynamic shape optimization of the
trijet supersonic configuration using our adjoint-based techniques. The governing equations are the Euler
equations, and the baseline configuration is in a free stream of Mach 1.8, and an angle of attack of 3.0deg
that, using the reference area for the configuration, results in a CL = 0.14. An unstructured grid, with all
the geometric details (and a total of approximately 6 million cells) is used. Using our methodology , 15
iterations of a complete trijet optimization with more than 100 design variables can be completed in 24 hrs
using only 10 cores. Much faster designs can be achieved using larger computational resources.

In this particular design problem we have used a maximum number of 108 design variables, which produce
a variation of the shape in three different areas of the aircraft: the wing, horizontal tail, and the rear portion
of the fuselage. The Free Form Deformation boxes for the wing and horizontal tail have (5, 4, 1) degrees in
the local (i, j, k) directions, and the rear fuselage box has (3, 3, 1) degrees of freedom in their local coordinate
directions. Fig. 12 shows the outline of the three Free Form Deformation boxes used in this work, together
with the location of the actual control points that we use as design parameters (seen on the surfaces of the
boxes).

For demonstration purposes we have performed three different optimization tests: an unconstrained drag
minimization, a drag minimization with a constrained lift coefficient (CL = 0.14), and inverse design problem
to obtain a target equivalent area distribution. It is important to highlight that, after definition of the design
problem, the process is completely automated.

The optimization results presented in this work make use of the SciPy library (http://www.scipy.org),
a well-established open-source software for mathematics, science, and engineering. The SciPy library provides
many user-friendly and efficient numerical routines for the solution of non-linear constrained optimization
problems, such as conjugate gradient, Quasi-Newton or sequential least-squares programming algorithms.
At each design iteration, the SciPy routines only require as inputs the values and gradients of the objective
functions, computed by means of our continuous adjoint approach, as well as the set of chosen constraints.

A. Drag minimization problem

Starting with the baseline geometry, and using two Free Form Deformation boxes (main wing, and horizontal
tail plane), we have performed an unconstrained drag minimization problem to check the quality of the
gradients obtained with the continuous adjoint methodology. In Fig. 13 one can see the upper and lower
surfaces of the trijet before and after the shape optimization.

In Fig. 14 (left) we show the rear part of the aircraft with especial emphasis in the drag reduction on the
nacelles and the modifications of the horizontal tail plane. These modifications would have to be considered
within the context of stability and control considerations that we have not included here. Finally in Fig.
14 (right) we show the evolution of the optimization. In this case the drag coefficient has been reduced
by about 50% with respect to the original configuration, although the lift coefficient has also decreased by
approximately 40%. Note that we have used the quasi-Newton method of Broyden, Fletcher, Goldfarb, and
Shanno (BFGS) as optimization method.

B. Drag minimization problem with lift constraint

As in the previous case we have started with the baseline configuration (mesh with a total of 6 million cells).
The objective is to reduce the drag coefficient while maintaining the original lift coefficient (CL = 0.14).
In this case we will use a Sequential Least Squares Programming optimization algorithm (SLSQP) with
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Figure 12. Free Form Deformation boxes used in the optimization process. Wing box (top), horizontal tail
(middle), aft fuselage (bottom).
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Figure 13. Shape design optimization (min Cd), upper and lower surfaces of the trijet.
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Figure 14. Detail of the shape design optimization (min Cd, left), and evolution of the optimization (right)

constraints as the optimizer. The design variable definition contains two Free Form Deformation boxes
(main wing and horizontal tail plane). In Fig. 15 we show the upper and lower surfaces of the trijet
(baseline and optimized configurations).

In Fig. 16 (left) we show the rear part of the aircraft with especial emphasis in the drag reduction on the
nacelles and the modification of the horizontal tail plane. Finally in Fig. 16 (right) we show the evolution
of the optimization, in this case the drag coefficient has been reduced by 20% with respect to the original
configuration, while the CL remains fixed at 0.14.

C. Equivalent Area inverse design problem

As an initial example of the entire methodology for equivalent-area-based adjoint design applied to complex
three-dimensional problems, this section shows a sample calculation where the baseline trijet configuration is
analyzed, the resulting equivalent area distribution is arbitrarily altered (including changes to the area of the
base of the equivalent area distribution and, therefore, the lift of the configuration), and the configuration
is redesigned using the FFD parameterization described in the next section in order to match as closely as
possible the target equivalent area distribution for the entire aircraft.

This test case is viewed as a validation of the entire design procedure we have followed to compute the
adjoint sensitivities of functions of the equivalent area distribution. It is, however, not intended to be a
realistic design test case: a more typical use of this design procedure may focus on fixing shortcomings of the
equivalent area distribution in a localized portion of the signature. In addition, realistic design processes may
(or may not) require that the overall lift be fixed. In this example we were interested in finding out if, even
with lift changes that may require angle of attack variations, the target equivalent area distributions could
be achieved. To be completely clear, in order to show true demonstrations of the capability just developed
additional efforts are being pursued in order to fix a target area distribution that exhibits the properties
desired by the aircraft designer.

Fig. 17 shows the results of the initial analysis and surface shape sensitivity calculations of our sample
design process. After an initial flow and adjoint solutions, these two solutions are combined to compute the
surface shape sensitivity of the cost function. In other words, Fig. 17 shows both the upper surface (top)
and the lower surface (bottom) sensitivities: by how much will our cost function (based on the difference
between the actual equivalent area and the target equivalent area) change if each point on the surface of
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Figure 15. Shape design optimization (min Cd, CL = 0.14), upper and lower surfaces of the trijet.
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Figure 16. Detail of the shape design optimization (min Cd, CL = 0.14, left), and evolution of the optimization
(right)

the aircraft were to move along the local (positive) normal? The plots also show the Cp distribution on the
upper and lower surface of the configuration for reference.

Note that these results (even without an actual optimization) are quite revealing: they point to the
areas of the configuration where the impact on the cost function of the equivalent area distribution is largest
and, therefore, the areas where the parameterization of the surface shape should be active. Owing to the
supersonic flow nature of this problem (regions of dependence/regions of influence) it is clear that the largest
contributions in order to reduce the difference between the target area distribution and the existing one are
on the lower surface of the configuration ahead of the nacelles/inlets. In fact these areas of high influence
can be seen to reflect in complicated ways off of the various surfaces of the configuration, making it nearly
impossible to be able to figure such patterns out using designer’s intuition alone. Note that, since the upper
surface hardly influences the computation of the equivalent area distribution on the azimuthal plane right
below the aircraft, the values of the shape sensitivities are rather small (though not identically zero).

Fig. 18 shows a large view and some details of the adjoint variable distribution (for the density variable)
in the symmetry plane, on the surface of the aircraft, and on a cutting plane perpendicular to the incoming
free stream. The adjoint variables are used to compute sensitivities of the equivalent area cost function to
the deformation of the surface of the aircraft configuration.

Fig. 19 shows the Mach number distribution in the symmetry plane and the location of the near field
plane.

Finally, Fig. 20 shows the initial, target, and final (after 5 iterations of the optimizer) equivalent area
distributions and near-field Cp distributions under the flight track. Given the limited extent of the FFD
boxes, the optimizer makes progress towards the target area distribution and manages to find a compromise
(with lower CL) of the best match it can find (within the provided parameterization) for the equivalent area
distribution. After 5 iterations, the optimizer ceases to make progress (no better solution is available). As
mentioned earlier, further study of this test case is warranted, using more realistic target area distributions
that may be better suited for industrial design. The evolution of the value of the cost function is also show
in Fig. 20 (right).

Fig. 22 (left and right) show the initial and final configuration that result from the optimization process.
Both the lower and upper surface Cp distributions are presented in the Figure.

The differences between the initial and final geometries can be seen in Fig. 22 below. At this moment,
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Figure 17. Upper and lower surface Cp and shape sensitivity distributions
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Figure 18. Adjoint of density variable: overall view and detail.

Figure 19. Near-field Mach number distribution (including near-field plane where adjoint variable jumps are
imposed).

Figure 20. Equivalent area optimization results including equivalent areas and Cp distributions (left) and
evolution of the cost function during optimization (right).
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Figure 21. Upper (top) and lower (bottom) surface Cp distributions for the baseline configuration and the
optimized configuration using the target equivalent area distributions.
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these geometry differences are limited to the ones selected by the optimizer from within the range of geometric
deformation possibilities offered by the free form deformation boxes we have selected for this study. Note
that the optimizer has chosen to alter the twist distribution of the wing and to thin the rear section of the
fuselage (which is obscured behind the initial grey surface.

Figure 22. Geometric differences between baseline and optimized (according to equivalent area criterion)
configurations. Such geometry perturbations are chosen by the optimizer from within the range of possibilities
offered by the FFD boxes used in this study. Baseline geometry is shown in grey. Optimized geometry is
shown in purple.

VIII. Conclusions and future work

In this work we have developed the methodology for the simulation and optimal shape design of supersonic
aircraft. In order to close the design loop it has been necessary to treat the geometry modifications (CAD
and a free-form deformation approaches), create apriori-adapted computational grids to resolve the near-field
pressure distribution accurately, and formulate and implement the adjoint solver for low-boom design (based
on cost functions related to the equivalent area distribution).

To the best of our knowledge this is the first application of adjoint methods to functionals based on the
equivalent area distribution. Moreover, the use of Campbell’s apriori-adapted grid methodology, combined
with the design of the complete geometry and the computation of the so-called surface sensitivity is a
contribution of this work.

Finally, we believe that we have demonstrated the viability of the technique in real 2D and 3D geometries,
but work remains to be done to show that complex and realistic configurations can be treated by our methods.
This work is currently ongoing.
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