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In this paper we describe and develop the continuous adjoint method to compute shape
sensitivities in aerodynamic design with turbulence modeling. We focus on compressible
flows described by the RANS equations and the classical Spalart–Allmaras model to de-
scribe turbulence. Turbulence modeling usually requires, in particular, to compute the
distance to the surface. Here, this distance is incorporated to the system as a new variable
solving the Eikonal equation.

I. Introduction

This paper contains a complete formulation of the adjoint approach for the shape optimization of an
obstacle with boundary S immersed in a fluid governed by the Reynolds Averaged Navier–Stokes (RANS)
equations. These equations are the result of expressing flow quantities in a turbulent regime as the sum of
random fluctuations over small times scales about a steady or slowly varying mean flow, and averaging the
Navier–Stokes equations. This yields a set of equations for the mean flow that are formally identical to the
standard Navier–Stokes equations, but incorporating two extra unknown terms, the Reynolds stress and the
turbulent heat flux. Further averages of the RANS equations will lead to additional unknowns at each level,
being unable to produce a balance between the number of unknowns and the number of equations. In order
to close the system, the most extended approach is based on the coupling of a turbulent model,33 which
allows to approximate the Reynold stress and the turbulent heat flux terms. This gives rise to a rich variety of
turbulence models fitting to different fluid regimes. Among these, we focus on the Spallart–Allmaras one,29

due to its wide use in industrial applications of aerodynamics. As a result, a system of partial differential
equations (PDEs), suitable for numerical simulation at a relatively low cost, but still retaining significant
properties of the turbulent flow, is obtained.

Shape optimization methods have grown in importance in aerodynamic design within the last decade. In
gradient-based optimization techniques, the goal is to minimize a suitable cost or objective function (drag
coefficient, deviation from a prescribed surface pressure distribution, etc.) with respect to a set of design
variables (defining, for example, an airfoil profile or aircraft surface). Minimization is achieved by means
of an iterative process which requires the computation of the gradients or sensitivity derivatives of the cost
function with respect to the design variables.
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Gradients can be computed in a variety of ways, the most actively pursued one being the adjoint
method,2,4, 13,24 due, among other factors, to their ability of computing these derivatives at a cost com-
parable to that of numerically solving the state PDEs. Adjoint methods are conventionally divided into
continuous and discrete. In the continuous approach, the adjoint equations are derived from the governing
PDE and then subsequently discretized, whereas in the discrete approach the adjoint equations are directly
derived from the discretized governing equations.

The continuous adjoint approach allows understanding the physical significance of the adjoint equations
and boundary conditions. It also has the advantage that the adjoint system has an unique form independent
of the scheme used to solve the flow-field system, and hence offers flexibility in choosing the discretization
scheme for the adjoint system. However, this may result in discrepancies in the gradient of the discretized
objective function. On the other hand, the discrete adjoint provides the “exact” gradient of the discretized
objective function, and should give gradients which are closer in value to those computed by finite differences.
It also ensures that the optimization process can fully converge, although it suffers from increased memory
requirements and development costs may increase noticeably, especially in case of high-order discretizations
with extended stencils.

From a practical point of view, a nontrivial question appears when computing the distance to the surface,
required by the model. In this work we solve this problem by characterizing this distance as a solution of
the Eikonal equation in the domain. Thus, the final system of equations incorporates the Eikonal equation,
taking part of the continuous formulation of the problem. The analysis with other turbulence models can
be derived similarly.

To the best of authors’ knowledge, the only previous contribution concerning such a continuous adjoint
approach to the RANS equations in conjunction to a turbulence model is the work of Zymaris et al .34 This
work, however, is devoted to the incompressible version of the Navier–Stokes equations, and restricted to
interior flows in duct geometries. Besides, only sensitivities regarding the total pressure loss functional in the
duct are considered. Other few similar works take into account variations in turbulent viscosity, although
they are all based on the discrete adjoint approach: Nielsen et al ,22 Dwight et al ,7 Anderson and Bonhaus,1

Lee et al ,20 Mavriplis21 and Kim et al .18 We refer to the introduction in Zymaris et al34 for a more detailed
description on the previous literature on this subject.

The organization of the paper is as follows. In §II we describe the model and state the optimization
problem. In §III the continuous adjoint method to compute sensitivities of the RANS equations, coupled with
the Spalart–Allmaras turbulence model, is derived in a general framework. The practical implementation of
the method is described in §IV. In §V some numerical experiments will be presented illustrating the relevance
of the developments described in this work. Some details on the sensitivity calculus and the explicit formulas
are given in the appendix §VII at the end of this work.

II. Description of the problem

The Navier–Stokes equations19,32 (see §VII.A) express the conservation of mass, momentum and energy
in a viscous fluid. Classical aeronautical applications assume that the air is governed by these Navier–Stokes
equations on a domain Ω ⊂ IR3, delimited by disconnected boundaries divided into a “far field” Γ∞, and
adiabatic walls that we denote by S. Their steady-state formulation (without source terms) can be written
in the following form: 

RU (U, ν̂) = ∇ · ~F c −∇ ·
(
µ1
tot
~F v1 + µ2

tot
~F v2
)

= 0 in Ω,

~v = 0 on S,

∂nT = 0 on S,

(W )+ = W∞ on Γ∞,

(1)

where U = (ρ, ρv1, ρv2, ρv3, ρE)T stands for the vector of conservative variables, ρ is the density, E is the
energy, ~v = (v1, v2, v3) ∈ IR3 is the flow speed in a Cartesian system of reference, and T is the temperature.
The last equation in (1) represents classical far field boundary conditions simulating the fluid behavior at

infinity. The vectors ~F c(U) = (~F c1 ,
~F c2 , ...,

~F c5 )T are the convective fluxes and ~F vk(U) = (~F vk1 , ~F vk2 , ..., ~F vk5 )T,
k = 1, 2 are the viscous fluxes, in where we have considered separately the contribution of the viscous
forces and the heat flux transfer. Expressions for µ1

tot and µ2
tot are given in (3) below. Here (·)T denotes

transposition.
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As usual in turbulent modeling based upon the Boussinesq hypothesis, which states that the effect of
turbulence can be represented as an increased viscosity, the viscosity is divided into a laminar µdyn and
a turbulent µtur component. The laminar or dynamic viscosity is usually taken to be only dependent on
the temperature, µdyn = µdyn(T ), whereas µtur is obtained from a suitable turbulence model involving the
flow and a set of new variables ν̂, i.e., µtur = µtur(U, ν̂). Here we assume that ν̂ is a single scalar variable
obtained from a one-equation turbulence model, which can be written, in a general form, as

Rν̂(U, ν̂, dS) = ∇ · ~T cv − T s = 0 in Ω,

ν̂ = 0 on S,

ν̂∞ = σ∞ν∞ on Γ∞,

(2)

where ~T cv = ~T cv(U, ν̂, dS) stands for the convective and viscous terms, and T s = T s(U, ν̂, dS) is used for
the source term, dS being the distance to the boundary of the obstacle S. In the particular case of the
Spalart–Allmaras model the convective, viscous and source terms are given in §VII.B. For fully turbulent
calculations, the far field boundary condition for the turbulent viscosity is to impose some fraction of the
laminar viscosity at the far field,29 where σ∞ is some turbulence model constant, usually ranging between 3
and 5. On viscous walls ν̂ is set to zero, corresponding to the absence of turbulent eddies very near to the
wall.

Once the turbulent viscosity has been computed, turbulence is coupled to the main stream flow by
replacing the dynamic viscosity in the momentum and energy equations with

µ1
tot = µdyn + µtur, µ2

tot =
µdyn
Prd

+
µtur
Prt

(3)

where Prd and Prt are respectively the dynamic and turbulent Prandtl numbers.
Note that in (2) we have incorporated the distance variable, dS , which is common in turbulence modeling

and, in particular, it appears in the considered Spalart–Allmaras model. The new variable, dS(S), solves
the so-called Eikonal equation {

Rd(dS) = |∇dS |2 − 1 = 0 in Ω,

dS = 0 on S.
(4)

Systems (1), (2) and (4), together with a suitable equation of state to describe the fluid thermodynamics,
constitute a complete system of equations and boundary conditions for the flow variables.25,33

A key element for the definition of a optimal shape design problem is the objective function. In this case,
we introduce a objective function which is assumed to only depend on the values of the flow variables at the
boundary S. As it was shown in,4 for the Navier–Stokes system only objective functions depending on ~f
and the temperature T are allowed for continuous adjoint optimization, with ~f given by

~f = (f1, f2, f3) = P~n− σ̄ · ~n, σ̄ = µ1
totτ̄ (5)

where ~n denotes the exterior normal to the surface S, P is the pressure of the fluid and σ̄ the second order
tensor of viscous stresses, τ̄ given in §VII.A. Note that this includes, in particular, functionals depending
only on the pressure P since it can be written as a function of ~f , using the fact that ~n · σ̄ · ~n = 0 on the
boundary.4 More precisely,

P = ~n · (P~n− σ̄ · ~n) = ~f · ~n on S. (6)

In the presence of turbulence modeling a similar situation appears, the only difference being that we can
now add dependence on the new turbulence variable ν̂ in terms of its unknown value on the boundary, i.e.
∂nν̂, since ν̂ = 0 on S. Thus, we will consider the following general choice of objective function

J(S) =

∫
S

j(~f, T, ∂nν̂, ~n) ds. (7)

III. Variation of the objective function: the adjoint approach

As usual in the adjoint approach, flow equations are incorporated to the cost functional as constraints
by means of a Lagrange multiplier for each equation ΨT

U = (ψ1, ψ2, ψ3, ψ4, ψ5) , ψν̂ , ψd. In this way, the
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Lagrangian reads

J (S) =

∫
S

j(~f, T, ∂nν̂, ~n) ds

+

∫
Ω

(
ΨT
URU (U, ν̂) + ψν̂Rν̂(U, ν̂, dS) + ψdRd(dS)

)
dΩ. (8)

Let us consider an arbitrary (but small) perturbation of the boundary S which, without loss of generality,
can be parameterized by an infinitesimal deformation of size δS along the normal direction to the surface S.
The new surface obtained after the deformation is then given by

S′ = {~x+ δS ~n, ~x ∈ S} (9)

where, for small deformations, the following holds28{
δ~n = −∇S(δS)

δ(ds) = −2HmδS ds
(10)

where Hm is the mean curvature of S computed as (κ1 +κ2)/2, and (κ1, κ2) are curvatures in two orthogonal
directions on the surface. Here ∇S represents the tangential gradient operator on S, defined as a IR3 vector
with null normal component.

Assuming a regular flow solution U and a smooth boundary S, the variation of the functional J under
the deformation can be evaluated as

δJ =

∫
S

δj(~f, T, ∂nν̂, ~n) ds+

∫
δS

j(~f, T, ∂nν̂, ~n) ds

+

∫
Ω

(
ΨT
UδRU (U, ν̂) + ψν̂δRν̂(U, ν̂, dS) + ψdδRd(dS)

)
dΩ (11)

where, using the convention of summation of repeated indexes i = 1, 2, 3, we have

δj(~f, T, ∂nν̂, ~n) =
∂j

∂fi
δfi +

∂j

∂T
δT +

∂j

∂ (∂nν̂)
δ (∂nν̂)− ∂j

∂~n
· ∇S(δS)

=
∂j

∂ ~f
· (δP~n− δσ̄ · ~n) +

∂j

∂T
δT +

∂j

∂ (∂nν̂)
δ (∂nν̂)

−
(
∂j

∂~n
− ∂j

∂ ~f
P − ∂j

∂ ~f
· σ̄
)
· ∇S(δS) (12)∫

δS

j(~f, T, ∂nν̂, ~n) ds =

∫
S

(
∂j

∂fi
∂nfi +

∂j

∂T
∂nT +

∂j

∂ (∂nν̂)
∂2
nν̂ − 2Hmj

)
δS ds (13)

and δRU , δRν̂ and δRd represent the variations of RU , Rν̂ and Rd respectively. Note that in (12) we have

written the variation δ ~f in terms of δP and δσ̄ and we have used formula (10) for δ~n. The variations
δP~n− δσ̄ · ~n, δT and δ(∂nν̂) appearing in (12) can be computed from the following linearized system

δRU (U, ν̂) =
∂RU
∂U

δU +
∂RU
∂ν̂

δν̂ = 0 in Ω,

δ~v = −∂n~v δS on S,

∂n (δT ) = (∇T ) · ∇S(δS)− ∂2
nTδS on S,

(δW )+ = 0 on Γ∞.

(14)


δRν̂(U, ν̂, dS) =

∂Rν̂
∂U

δU +
∂Rν̂
∂ν̂

δν̃ +
∂Rν̂
∂dS

δdS = 0 in Ω,

δν̂ = −∂nν̂ δS on S,

δν̂ = σ∞δν on Γ∞.

(15)

{
δRd(dS) = ∇dS · ∇δdS = 0 in Ω,

δdS = −δS on S.
(16)
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where (δW )+ represents the incoming characteristics on the “far field” boundary. In the last formula of (16)
we have used the fact that ∂ndS = 1 and therefore, δdS = −∂ndSδS = −δS.

As usual, domain integrals in (11) are eliminated using integration by parts and introducing the associated
adjoint operators. The integration by parts also provides some boundary terms. These boundary terms are
combined with those boundary terms in (11), depending on δP~n − δσ · ~n, δT and δ(∂nν̂), through the
boundary conditions for the adjoint operators. We describe this process below.

From (14)-(16), the last three terms in (11) read∫
Ω

ΨT
U

(
∂RU
∂U

δU +
∂RU
∂ν̂

δν̂

)
+

∫
Ω

ψν̂

(
∂Rν̃
∂U

δU +
∂Rν̂
∂ν̂

δν̂ +
∂Rν̂
∂dS

δdS

)
+

∫
Ω

ψd
∂Rd
∂dS

δdS =∫
Ω

(
AUUΨU +AUν̂ ψν̂

)T
δU +

∫
Ω

(
Aν̂UΨU +Aν̂ν̂ψν̂

)
δν̂ +

∫
Ω

(
Adν̂ψν̂ +Addψd

)
δdS +

∫
S

BS ds (17)

where AUU =
(
∂RU
∂U

)T
, AUν̂ = ∂Rν̂

∂U , Aν̂U =
(
∂RU
∂ν̂

)T
, Aν̂ν̂ = ∂Rν̂

∂ν̂ , Adν̂ = ∂Rν̂
∂dS

and Add = ∂Rd
∂dS

are the adjoint
operators and BS stands for the boundary terms coming from the integration by parts∫

S

BS ds =

∫
S

~ϕ · (δP~n− δσ̄ · ~n) ds+

∫
S

(g1 · ~ϕ+ g2∂nψ5 − ψν̂g5)δT ds+

∫
S

g3ψν̂δ(∂nν̂) ds

+

∫
S

ψν̂g4δP ds−
∫
S

ψdδS ds+

∫
S

ĝδS ds (18)

where ~ϕ = (ψ2, ψ3, ψ4) and ~g1, gi, i = 2, 3, 4, 5 are some functions that do not depend on the adjoint variables
ΨU , ψν̂ , ψd, and ĝ which does not depend on ψd. The analytical expression of these terms and the adjoint
operators above is given in detail in (99)-(108) in Appendix §VII.

We now observe that, due to the relation (6), the first and third terms on the right hand side of (18) can
be written together. In fact, the linearization of (6) provides

δP = δ(P~n · ~n− ~n · σ̄ · ~n) = ~n · (δP~n− δσ̄ · ~n)− 2(P~n− ~n · σ̄) · ∇S(δS) on S, (19)

where we have used the symmetry of the tensor σ̄ and the formula for δ~n in (10). Therefore, formula (18)
can be written as∫

S

BS ds =

∫
S

(~ϕ+ ψν̂g4~n) · (δP~n− δσ̄ · ~n) ds+

∫
S

(g1 · ~ϕ+ g2∂nψ5 − ψν̂g5)δT ds+

∫
S

g3ψν̂δ(∂nν̂) ds

−
∫
S

ψdδS ds+

∫
S

ĝδS ds− 2

∫
S

ψν̂g4(P~n− ~n · σ̄) · ∇S(δS) ds. (20)

In order to eliminate domain integrals in (11), when replacing the last three terms by using (17), we
assume that the adjoint variables satisfy

0 = AUUΨU +AUν̂ ψν̂ (21)

0 = Aν̂UΨU +Aν̂ν̂ψν̂ (22)

0 = Adν̂ψν̂ +Addψd. (23)

Analogously, all boundary terms in (17) without explicit dependence on δS can be eliminated by considering
the following choice of boundary conditions for the adjoint variables

ψν̂ = − 1

g3

∂j

∂(∂nν̂)
on S, (24)

ϕi = − ∂j

∂fi
− ψν̂g4ni on S, (25)

∂nψ5 = − 1

g2

(
∂j

∂T
− ~g1 · ~ϕ+ ψν̂g5

)
on S, (26)

ψd = 0 on S. (27)

Note that this choice for the boundary conditions must be done in order, i.e. the value of ψν̂ on the right
hand side of (25) and (26) is obtained from (24) while the value of ~ϕ in (26) is computed from (25).

5 of 25

American Institute of Aeronautics and Astronautics



Combining (11)-(13), (17)-(20), the adjoint equations (21)-(23) and the boundary conditions in (24)-(27),
we finally obtain

δJ =

∫
S

(
∂j

∂fi
∂nfi +

∂j

∂T
∂nT +

∂j

∂ (∂nν̂)
∂2
nν̂

)
δS ds

−
∫
S

(
∂j

∂~n
+
∂j

∂ ~f
P − ∂j

∂ ~f
· σ̄
)
· ∇S(δS) ds−

∫
S

(ĝ + 2Hmj)δS ds

−2

∫
S

ψν̂g4(P~n− ~n · σ̄) · ∇S(δS) ds. (28)

In this expression, the adjoint variables are obtained by solving the closed system of partial differential
equations and boundary conditions given by (21)-(27).

It is important to recall here that neither the Navier–Stokes (21) nor the Spalart–Allmaras (22) adjoint
equations depend on the adjoint distance variable ψd. This is also the case of the functional sensibility (28),
since typical objective functionals in aerodynamics do not depend explicitly on the distance to the surface. In
this situation, it is therefore not necessary to solve (23), and the adjoint system simply reduces to (21)-(22).
One could consider, however, more sophisticated situations that would require the solution of (23). This
could be, for instance, the case of functionals with an explicit dependence on the distance to the surface by
means of a domain integral.

Some particular but still interesting situations provide a simplified formula for the variation of J , as
described in4 for Navier–Stokes. Assume that the objective function depends only on ~f in the following way

j(~f) = ~f · ~d (29)

where ~d is a constant vector (the choice ~d = ~n is also possible with some modifications, but for simplicity we

focus on constant ~d). Note that this is the case in drag or lift optimization problems. The adjoint boundary
conditions in this situation simply become

ψν̂ = ψd = 0, ~ϕ = −~d, ∂nψ5 = ~g1 · ~d/g2 (30)

and the variation of J is given by

δJ =

∫
S

~d · ∂nfiδS ds−
∫
S

(
P ~d− ~d · σ̄

)
· ∇S(δS) ds−

∫
S

(ĝ + 2Hmj)δS ds. (31)

Integrating now by parts, and assuming that either S is smooth or δS = 0 at its singular points, one yields

δJ =

∫
S

∂n(P ~d · ~n− ~d · σ̄ · ~n)δS ds+

∫
S

∇S ·
(
P ~d− ~d · σ̄

)
δS ds−

∫
S

(ĝ + 2Hmj)δS ds

=

∫
S

∇ · (P ~d− ~d · σ̄)δS ds−
∫
S

ĝδS ds = −
∫
S

ĝδS ds. (32)

Here we have used the fact that the divergence operator, on local coordinates of S, is given by

∇ · ~q = ∂n(~q · ~n) +∇S · ~q − 2Hm~q · ~n (33)

for a general vector field ~q, and the identity

∇ · (P ~d− ~d · σ̄) = (∇P −∇ · σ̄) · ~d = 0 on S, (34)

which is obtained assuming that the momentum equations in the Navier–Stokes system are satisfied on the
boundary, i.e. ∇P = ∇ · σ̄ on S.

The final expression in (32) involves the function ĝ, which as shown in §VII.E is reduced to ĝ = h3 due
to the boundary conditions in (30). In this way, the total variation of the functional finally comes given by
the simplified expression

δJ = −
∫
S

h3δS ds =

∫
S

(~n · Σ̄ϕ · ∂n~v − µ2
totCp∇Sψ5 · ∇ST ) δS ds (35)

with Σ̄ϕ depending on the gradient of the adjoint variables ~ϕ.
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IV. Numerical implementation of the adjoint equations

An appropriate rearrangement of terms in the vector-matrix multiplications in (21)-(23) leads to a more
compact formulation for the evaluation of the residuals of the adjoint system. Such a formulation, more
suitable for a practical implementation of the adjoint equations is presented as follows.

A. Spatial discretization

A finite-volume discretization is used to solve both the direct and adjoint equations. As usual, the finite-
volume discretization is obtained by applying the integral formulation of the governing equations to a control
volume Ωh, consisting of a cell of the median-dual mesh surrounding each node. In order to avoid any possible
confusion, mesh nodes will be numbered instead of denoted by standard indexes i, j, here reserved to indicate
spatial coordinates.

1. RANS equations

The solution of the flow (1) and the turbulence model (2) enter on the adjoint equations as the coefficients
of the adjoint system. For the flow equations, a central scheme with Jameson-Schmidt-Turkel (JST)-type
scalar artificial dissipation9,16 is used for the discretization of the convective flux. The convection of the
turbulent variable ν̂ is discretized using a fully upwinded scheme. Second order accuracy is easily achieved via
reconstruction of variables on the cell interfaces by using a MUSCL approach with limitation of gradients.30

In both cases, viscous fluxes are computed with a node-gradient-based approach due to Weiss et al.,9,31

which, apart of reducing the truncation error of the scheme, avoids the odd-even decoupling of mesh nodes
in the computation of residuals, resulting in second-order spatial accuracy. Source terms are approximated
via piecewise reconstruction in the finite-volume cells.

The solution of the turbulence model (2) requires as well the numerical approximation of the Eikonal
equation (4), in order to compute the distance field to the boundary of the obstacle. Our implementation
makes use of an efficient fast-marching solver for unstructured grids,8 based on a finite-element approximation
to the Eikonal equation in each mesh element. Second order accuracy is recovered by using not only the
information of the nodal values of the distance field, but incorporating the direction of the computed ∇dS
into the solver.27

2. Adjoint flow equation

Convective residuals. A modified version of the JST scheme without low-order dissipation is used for
the discretization of the convective term.4 This is given by∫

Ωh

∇ΨT
U · ~Ac dΩ (36)

which unfortunately is not written in conservative form, thus avoiding the direct application of the Green–
Gauss theorem. However, this flux can be seen as a convection with non-constant coefficients, given by the
evaluation of matrices ~Ac at the different mesh nodes. Hence, across the face of the control volume separating
two mesh nodes with local indexes 0 and 1, the part of the convective residual for node 0 can be computed
as

Rconv
U =


(~v · ~S)ψ1 + |~v|2

2 (γ − 1)l1ψ − (~v · ~S)l2ψ

(~v · ~S)ψ2 − v1(γ − 1)l1ψ + S1l2ψ

(~v · ~S)ψ3 − v2(γ − 1)l1ψ + S2l2ψ

(~v · ~S)ψ4 − v3(γ − 1)l1ψ + S3l2ψ

(~v · ~S)ψ5 + (γ − 1)l1ψ

+D01 (37)

where the adjoint variables are reconstructed at the cell face as ΨU = 1
2 (ΨU |0+ ΨU |1), whereas flow variables

are evaluated at node 0 (equivalently for node 1). In (37), ~S = Si = (Sx, Sy, Sz) denotes the normal vector
of the face located at the edge going from node 0 to node 1 such that its length coincides with the face area,
and we have introduced the following notation

l1ψ = (~ϕ · ~S) + (~v · ~S)ψ5 (38)

l2ψ = ψ1 + (~ϕ · ~v) +Hψ5. (39)
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The artificial dissipation between nodes 0 and 1 can be expressed as

D01 = κ(4)ε(4)
(
∇2 ΨU |0 −∇

2 ΨU |1
)
ω01λ01 (40)

ε(4) =

(
3
N0 +N1

N0N1

)2

(41)

λ0 = |~v0 · ~S|+ c0|~S| (42)

λ01 = |~v01 · ~S|+ c01|~S| (43)

ω0 =

(
λ0

4λ01

) 1
2

(44)

ω01 =
ω0ω1

ω0 + ω1
(45)

where ∇2 ΨU |0 =
∑
n∈N0

(ΨU |n− ΨU |0) denotes the undivided Laplacian operator, where N0 represents the

set of neighboring points to node 0 and N0 its size, ~v01 = 1
2 (~v|0 +~v|1) and c01 = 1

2 (c|0 + c|1) are the fluid and

sound speeds at the cell face, and κ(4) is an adjustable parameter. An artificial dissipation of upwind-type
could have been used as well, for which we refer the reader to.4

Viscous residuals. The viscous fluxes of the adjoint flow equation are discretized using the Green–Gauss
integral relation ∫

Ωh

∇
(
∇ΨT

U · µktotDvk
)
dΩ =

∫
∂Ωh

∇ΨT
U · µktotDvk d~S (46)

which yields the following form for the viscuous residuals

Rvisc
U =

1

ρ


−viΣijSj +

(
|~v|2
2 −

P
(γ−1)ρ

)
Σ5

Σ1jSj − v1Σ5

Σ2jSj − v2Σ5

Σ3jSj − v3Σ5

Σ5

 (47)

where the following abbreviations have been used

Σij = Σϕij + Σ5
ij (48)

Σϕij = µ1
tot

(
∂jϕi + ∂iϕj −

2

3
δij∇ · ~ϕ

)
(49)

Σ5
ij = µ1

tot

(
vj∂iψ5 + vi∂jψ5 −

2

3
δij~v · ∇ψ5

)
(50)

Σ5
i = γµ2

tot ∂iψ5 (51)

Σ5 = γµ2
tot∇ψ5 · ~S. (52)

For coherence with the discretization of the convective residuals, the gradients of the adjoint variables
are averaged (making use of the Weiss correction) at the cell face, whereas flow variables are evaluated at
node 0.

Source terms residuals. The remaining terms in (99) are treated as source terms, and approximated
via piecewise reconstruction of the solution in each finite volume cell. After some manipulations, the residual
vector can be written as

Rsource
U = |Ωh|



− 1
ρviσij∂jψ5 − Σij∂i

(
vj
ρ

)
+
(
|~v|2
2 αj − βj

)
∂jψ5 + 1

ρΣ5
jvi∂jvi + θ(|~v|2 − E) + ξ

1
ρσ1j∂jψ5 + Σ1j∂j

(
1
ρ

)
− v1αj∂jψ5 − 1

ρΣ5
j∂jv1 − θv1

1
ρσ2j∂jψ5 + Σ2j∂j

(
1
ρ

)
− v2αj∂jψ5 − 1

ρΣ5
j∂jv2 − θv2

1
ρσ3j∂jψ5 + Σ3j∂j

(
1
ρ

)
− v3αj∂jψ5 − 1

ρΣ5
j∂jv3 − θv3

αj∂jψ5 + θ


(53)
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where |Ωh| denotes the cell measure, and

αi = γµ2
tot ∂i

(
1

ρ

)
(54)

βi =
γ

γ − 1
µ2
tot ∂i

(
P

ρ2

)
(55)

κψ = τ̄ : ∇~ϕ+ ~v · τ̄ · ∇ψ5 +
Cp
Prt
∇T · ∇ψ5 (56)

θ =

[
κψ

(
1− µtur

µdyn

3c3v1

χ3 + c3v1

)
− Cp
Prt
∇T · ∇ψ5

(
1− Prt

Prd

)]
(γ − 1)

Rρ

∂µdyn
∂T

(57)

ξ = κψ

(
1 +

3c3v1

χ3 + c3v1

)
µtur
ρ

(58)

and τ̄ : ∇~ϕ = τij∂iϕj , with
∂µdyn
∂T given by (80).

Coupling residuals. Coupling between the Navier–Stokes and the Spalart–Allmaras adjoint equations
is obtained by means of (100). Its two first terms are integrated using piecewise reconstruction, yielding a
combined residual

Rν̂U
∣∣
p.w.

= |Ωh|



−Γ
ρ

(
α̃
(
|~v|2 − E

)
− µdyn

ρ

)
+ ν̂

ρvj∂jψν̂ + ψν̂
Λ
|~ω| (∂jvi − ∂ivj) ∂j

(
vi
ρ

)
Γ
ρ α̃v1 − ν̂

ρ∂1ψν̂ − ψν̂ Λ
|~ω| (∂jv1 − ∂1vj) ∂j

(
1
ρ

)
Γ
ρ α̃v2 − ν̂

ρ∂2ψν̂ − ψν̂ Λ
|~ω| (∂jv2 − ∂2vj) ∂j

(
1
ρ

)
Γ
ρ α̃v3 − ν̂

ρ∂3ψν̂ − ψν̂ Λ
|~ω| (∂jv3 − ∂3vj) ∂j

(
1
ρ

)
−Γ
ρ α̃


(59)

with the abbreviations

α̃ =
(γ − 1)

Rρ

∂µdyn
∂T

(60)

Γ = ψν̂ΛŜfv2
(
fχv2 + fv1

v2 f
χ
v1

)
χν − 1

σ
∇ν̂ · ∇ψν̂ (61)

and all partial derivatives appearing in these formulas given in §VII.D.
The third term of (100) is however written in conservative form. Hence, this part of the residual is

evaluated by means of the Green–Gauss theorem as

Rν̂U
∣∣
cons

=
ψν̂
ρ

Λ

|~ω|


−vi (∂jvi − ∂ivj)Sj

(∂jv1 − ∂1vj)Sj

(∂jv2 − ∂2vj)Sj

(∂jv3 − ∂3vj)Sj

·

 . (62)

3. Adjoint turbulent equation

Convective residuals. To preserve consistency with the direct solver, the turbulent adjoint variable
ψν̂ is discretized as well using a second-order upwind scheme with face reconstruction and limitation of
gradients. This convection also comes given as a non-conservative flux in the form∫

Ωh

∇ψν̂ · ~Bcv dΩ (63)

where the analytical expression for the flux ~Bcv is given by (87). Supposing a regular solution of the adjoint
equations, the convective residual for node 0 across the face of the control volume separating nodes 0 and 1
is approximated as

Rconvν̂ =
1

2

[
~Bcv0 · ~S (ψν̂ |0 + ψν̂ |1)− | ~Bcv01 · ~S| (ψν̂ |1 − ψν̂ |0)

]
. (64)
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Viscous residuals. Viscous fluxes are newly discretized using the Green–Gauss integral relation∫
Ωh

∇ (∇ψν̂ ·Ecv) dΩ =

∫
∂Ωh

∇ψν̂ ·Ecv d~S (65)

yielding for node 0 the following residual

Rvisc
ν̂ = −ν + ν̂

σ
∇ψν̂ · ~S (66)

where gradients of the turbulent adjoint variable are newly averaged at the cell face, including the Weiss
correction, and rest of variables are evaluated at node 0.

Source terms residuals. The rest of terms in (102) constitute the source contributions to the adjoint
turbulent equation. As for the coupling residuals of the adjoint Navier–Stokes equation, the two first terms
are integrated using piecewise reconstruction, resulting in a residual in the form

Rsourceν̂ |p.w. = |Ωh| (−ψν̂Bs) (67)

with Bs given by (90). The Es term is evaluated by the Green–Gauss integral relation, yielding

Rsourceν̂ |cons. =
2cb2
σ
ψν̂∇ν̂ · ~S (68)

Coupling residuals. Finally, residuals coming from the coupling with the adjoint flow equation, given
by (101), can be written as

RUν̂ = |Ωh|κψ
∂µtur
∂ν̂

(69)

with κψ and ∂µtur
∂ν̂ given by (56) and (83).

4. Adjoint Eikonal equation

As previously stated, neither the adjoint flow nor the adjoint turbulent equations depend on the adjoint dis-
tance variable ψd. This adjoint variable is neither needed to compute the functional sensibility, since typical
objective functionals in aerodynamics do not depend explicitly on the distance to the surface. Hereafter,
and for the functionals considered below, there is no need to implement and numerically solve (23).

5. Boundary conditions

Boundary conditions for a solid wall can be imposed in two ways, either by using a ghost cell scheme adapted
to unstructured meshes, or by directly enforcing the boundary conditions on the analytical flux expressions.
On the far-field, characteristic boundary conditions are used.

B. Steady-state time integration

A time-marching strategy in pseudo-time9,12 is used to obtain the steady solution of the flow equations and
the adjoint system (21)-(22). Although the two sets of equations are coupled over the turbulent viscosity
µtur, and it would be more efficient in terms of operation counts to formulate and solve them simultaneously,
decoupling is by far the most widely used strategy, both for simplicity and because of the different character
of both types of equations. In addition, it also gives flexibility in order to introduce in a future other models
of turbulence.

Due to the inherent stiffness of turbulence-transport equations, time integration of both the Navier–
Stokes and the Spalart–Allmaras adjoint systems is tackled with an implicit backward-Euler scheme.7 Direct
inversion of the banded matrix that defines this system is impractical because of rapid increase of operation
count with the number of mesh points and large storage requirements, especially in 3-D. The resulting linear
system is therefore solved iteratively by means of a LU-SGS algorithm.17 In order to speed up the rate of
convergence, an overset multigrid scheme is used in conjunction with the solver.14,15
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C. Design variables

Different types of design variables are traditionally used in aerodynamic shape optimization, including de-
formation or bump functions such as Wagner polynomials, Hicks–Vanderplaats functions, Legendre poly-
nomials, Hicks–Henne functions, Bézier polynomials, nonuniform rational B–splines (NURBS), as well as
modifications in the thickness and camber line and also individual surface node movement.

In the present work, the shape functions introduced by Hicks–Henne11 have been used

∆y =

N∑
n=1

δnfn(x), fn(x) = sin3 (πxen) , en =
log(0.5)

log(xn)
(70)

where each shape function has its maximum at the point xn, being N the number of bump functions and δn
the design variable step. These functions are applied separately to the upper and lower surfaces.

In 3D configurations, a Free–Form Deformation26 (FFD) strategy has been chosen. In FFD a initial box
is parameterized as a Bézier solid, and the object (wing, airplane, etc.) that we want to design is inside this
box. The control points of the box become design variables, as they control the form of the solid, and thus
the shape of the surface grid inside (FFD wraps the object on this solid box). The overall procedure is as
follow:

• Define the control points that determine the initial box, according with the part of the physical geom-
etry we want to modify, i.e., encapsulating the part of the object that is going to be modeled. This
way, the solid box is now parameterized by the following expression:

X(u, v, w) =

l,m,n∑
i,j,k=0

Pi,j,kB
l
i(u)Bmj (v)Bnk (w), (71)

where u, v, w ∈ [0; 1], and the B are the Bernstein polynomials.

• Given a set of points on the object, which the cartesian coordinates are known, transform their coor-
dinates to the parametric coordinates of the Bézier box.

• Modify the box by modifying its control points. Every point inside the box will inherit the deformation
on the designed surface.

• Recover the new cartesian coordinates of the modified points of the initial object.

To sum up, in a optimization procedure the coordinates of the control points of the Bézier box, are the
design variables. A change in those points inherits a smooth movement of the object surface.

D. Mesh deformation

Once the boundary displacements have been computed, a torsional spring method is used in order to move
the unstructured meshes. The method is based on the definition of a stiffness matrix, kij , that connects the
two ends of a single bar (mesh edge), in addition to torsional springs around each mesh node which prevent
nodes from crossing edges.3,6 Equilibrium of forces is then imposed at each mesh node∑

j∈Ni

kij~eij~e
T
ij

 ~ui =
∑
j∈Ni

kij~eij~e
T
ij~uj (72)

where the displacement ~ui is unknown and is computed as a function of the known current displacements ~uj ,
being Ni the set of neighboring points to node i and ~eij the unitary vector in the direction connecting both
points. The system of equations (72) is solved iteratively by a conjugate gradient algorithm with Jacobi
preconditioning.
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E. Optimization framework

The continuous adjoint formulation allows the computation of a wide range of different objective functions:
quadratic deviation from a target pressure (inverse design), drag minimization, lift maximization, pitching
moment, aerodynamic efficiency, and linear combinations of those. Also, several constraints have been
implemented: fixed non-dimensional flow parameters (minimum lift, maximum drag, etc.) and geometrical
estimations (maximum and minimum thickness, curvature, volume, area, etc.).

The optimization results presented in this work make use of the SciPy library (http://www.scipy.org),
a well-established open-source software for mathematics, science, and engineering. The SciPy library provides
many user-friendly and efficient numerical routines for the solution of non-linear constrained optimization
problems, such as conjugate gradient, Quasi–Newton or sequential least-squares programming algorithms.
At each design iteration, the SciPy routines require as inputs the values and gradients of the objective
functions as well as the chosen constraints.

V. Summary of results, numerical experiments

All the final formulas of this paper have been implemented in the aerodynamic shape design suite Cades23

(Code for Aerodynamical DEsign and Simulation, developed by the research group). Cades is a complete
suite for aerodynamical shape design composed by five C++ programs (CFD solver, grid adaptation, grid
deformation, domain partitioning, and gradients computation), and several Python scripts. In particular,
the software Cades CFD is a finite volume code that solves the direct (flow), adjoint (using the formulation
of this paper), and linearized problems for the potential, Euler, Navier-Stokes, and RANS equations on either
2-D or 3-D unstructured meshes using an edge-based data structure.

All meshes used in the computations are unstructured grids, where appropriate resolution near the airfoil
surfaces is achieved with a layered subgrid composed of quadrilateral elements. Since the computation of
gradients using the Green–Gauss theorem is known to produce considerable errors in any mixed grid at
interfaces from differing element types, gradients are evaluated by a weighted Least–Squares approximation.
Standard values for the first, second and forth–order artificial dissipation coefficients of the flow JST solver
are 0.1, 1/4, and 1/64, respectively. The value for the adjoint forth–order artificial dissipation coefficient
κ(4) in (40) is taken to be 1/150.

All the final formulas of this paper have been implemented in the software suite with the exception of the
terms involving the factor Λ

|~ω| in (59) and (62). Numerical inspection of the quantity Λ, given by (95), reveals

very small values for this factor and only within the turbulent boundary layer. Precisely, the magnitude of
the vorticity is maximal close to the airfoil surface, making the overall factor Λ

|~ω| negligible when compared

to the rest of terms in the computation of the adjoint residuals. Neglecting these terms, however, helps to
avoid numerical instabilities further from the obstacle surface, where the magnitude of the vorticity tends
to zero. As proved in the following sections, very good results are still obtained by making this assumption,
although other regularization approaches for these terms are under current development.

In this section some preliminary numerical test will be presented. Firstly, gradients computed with the
adjoint method described in this paper are compared with those obtained with a forward finite difference
(i.e., brute force) to demonstrate the quality of the gradients computed using this approach in comparison
with those obtained using the so–called frozen viscosity hypothesis. Then, a transonic unconstrained drag
minimization problem is shown to highlight the importance of using the complete adjoint methodology
compared with the frozen viscosity strategy. Finally, an unconstrained inviscid 3D drag minimization problem
using the Free–Form deformation technique will be presented to study the viability of the FFD for the
definition of 3D design variables.

A. Regulatory effects and improvements in convergence of the full turbulent adjoint

Our first case of study involves a transonic, turbulent flow over the RAE-2822 airfoil. The flow condi-
tions correspond to AGARD-AR-138 case 9,5 with corrections to account for wind tunnel effects,10 namely
M∞ = 0.734, α = 2.54o, and Re = 6.5× 106. Under these conditions the flow develops a shock wave on
the upper surface (located at about 50% to 60% of the airfoil chord) and a very small (if present at all)
shock-induced separation behind the shock. The computational grid is an unstructured, two-dimensional
grid with 13937 nodes and 22842 elements, with 192 nodes on the airfoil surface and 40 nodes on the far-field
boundary, with is located 100 chords away from the airfoil.
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Figure 1. Comparison of computed adjoint density variables ψ1 for drag (top row of the panel) and lift (bottom
row) objective functions, using the proposed fully turbulent adjoint approach (left column) or under the frozen
viscosity hypothesis (right column).

Drag coefficient Lift coefficient

Fully Turbulent Frozen Viscosity Fully Turbulent Frozen Viscosity

ψ1 [-4.80, 2.50] [-6.61, 17.37] [-125.62, 77.44] [-157.88, 458.59]

ψ2 [-8.34, 14.21] [-28.43, 31.18] [-260.59, 362.68] [-756.58, 774.01]

ψ3 [-18.67, 1.06] [-57.71, 0.88] [-522.61, 28.92] [-1478.69, 34.67]

ψ5 [-1.55, 0.74] [-1.54, 1.26] [-38.18, 22.41] [-33.06, 35.76]

ψν̂ [−1.65, 0.65]× 105 N/A [−4.55, 1.38]× 106 N/A

Table 1. Range of variation of the different adjoint variables for drag and lift objective functions, using the
proposed fully turbulent adjoint approach or under the frozen viscosity hypothesis. N/A ≡ Not Assigned.

A comparison between the computed solutions for the adjoint density variable ψ1, using either the
proposed fully turbulent adjoint method or under the generally used frozen viscosity hypothesis, can be
found in Fig. 1 for both the drag and lift objective functions. Although similar, one can realize that contour
curves for the fully turbulent adjoint are in general smoother than those for the adjoint method with frozen
viscosity, and much less affected by the presence of the shock wave. This is due to the coupling terms between
the flow and the turbulent equations introduced by the new formulation, given by (100). The same applies
for the rest of the adjoint flow variables. In fact, and due to visualization purposes, all the smoothing effects
of the fully turbulent adjoint can not be clearly appreciated in Fig. 1. This becomes more evident in Table 1,
where the minimum and maximum values of all the adjoint variables are listed. The range of variation of
all the adjoint variables is always smaller using the proposed method than the standard adjoint with frozen
viscosity. The values of the adjoint turbulent variable ψν̂ are however much larger than those of the adjoint
flow variables, although concentrated in the boundary layer and neither affected by the shock wave.

The convergence properties of the adjoint method are also improved by considering the full coupling
between the flow and the turbulent equations. This is shown in Fig. 3, where it is plotted the convergence of
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Figure 2. Computed adjoint turbulent variables ψν̂ for drag (leftl) and lift (right) functionals.

Figure 3. Convergence of the geometrical sensitivity in the computation of the gradient of the drag (left) and
lift (right) coefficients.

the sensitivity parameter given by (35) for the computation of the gradient of the drag and lift coefficients.
The two adjoint approaches are compared using the same stopping criteria of an accumulated error of 10−5

in the last 100 elements of the Cauchy series. The convergence is better in the computation of the gradient
of the drag coefficient under deformations of the wing profile, where 7091 iterations are needed for the fully
turbulent approach instead of the 9535 of the adjoint method with frozen viscosity, but especially relevant
for the case of the lift gradient, where only 13128 iterations are now required instead of the respective 51897.
Note that, since the final values of the adjoint flow variables are different, the two approaches do not have
to converge to the same value of surface sensitivity.

B. Numerical comparison of gradients in drag and lift optimization problems

We now present comparisons of the gradients computed by the two adjoint methods for the previous case
of study. The Hicks–Henne functions have been used as design variables. The first design variable has its
maximum close to the trailing edge on the lower side of the airfoil, and subsequent variables displace the
maximum in the clockwise direction. A total number of 38 bump functions were used, spanning the complete
surface of the airfoil.

The gradients computed with the fully turbulent adjoint method and the continuous adjoint with frozen
viscosity are compared with those obtained with a forward finite-difference (i.e., brute force) method, where
the finite step of the design variable must be carefully selected depending on the flow regime.

Figure 4 summarizes the main results on the comparison of the gradients. Assuming the finite-differences
approximation as the reference solution, it is clear that the gradients computed by the adjoint method
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Figure 4. Comparison of gradients computed by the fully turbulent adjoint approach and frozen viscosity
adjoint of the drag (left) and lift (right) coefficients. Forward finite-differences approximations of the gradients
are given as reference solutions. In these figures, the negative part of the x axis denotes design variables
located on the lower side of the airfoil, and positive x those located on the upper side.

described in this paper are in much better agreement to the exact solution than those computed using the
frozen viscosity simplification. Moreover, as it can be seen in both examples close to the trailing edge on
the lower surface of the airfoil, the frozen viscosity adjoint can indeed predict a gradient not only wrong
in magnitude but also in its direction, thus seriously compromising the efficiency of the gradient-based
optimization solver during the minimization process.

Although in general much better, especially for the approximation of the derivatives of the drag coefficient,
the gradients computed by the fully turbulent continuous approach are not in total agreement with those
obtained by the finite-differences method. The reason of these discrepancies are: Firstly, a continuous
adjoint can not incorporate the influence of the mesh sensitivities on the calculations. Secondly, the flow
sensitivity depends on the quality of the flow variable gradients that are used to build the source terms of
the continuous adjoint formulation. And finally, the solution to the RANS equations is strongly affected
by the computation of the distance field to the boundary surface. The very small deformations required to
approximate the gradient by finite-differences might not be properly seen by either an Eikonal or even a
brute-force distance solver. On the other hand, the adjoint method does not need to compute a new distance
field for each surface deformation, since it only uses the distance field computed in the original grid with
much better quality. So, apart from the fact of being just a first-order approximation to the exact gradient,
it remains uncertain the degree of accuracy that can be attributed to the finite-differences solver in these
situations. This may serve as an explanation to the bigger discrepancies between the turbulent adjoint and
the finite-differences for the computation of the lift derivatives on the upper surface, where the lift coefficient
is extremely sensible to the position of the shock.

C. 2D unconstrained drag minimization using adjoint RANS

The goal of this academic problem is to reduce the drag of a RAE-2822 profile, by means of modifications
of its surface. The angle of attack, Mach number, and Reynolds number are fixed so that the flow remains
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transonic (M∞ = 0.734, α = 2.54o, and Re = 6.5× 106). A total of 38 Hicks–Henne bump functions have
been used as design variables. The first design variable has its maximum close to the trailing edge on the
lower side of the airfoil, and subsequent variables displace the maximum in the clockwise direction.

Figure 5. Optimization convergence history, adjoint method vs. frozen viscosity (left). Pressure coefficient
distribution, original configuration and final design (right).

In Fig. 5 (left), the optimization convergence history is presented for the frozen viscosity method (without
adjoint turbulence model), and for the complete adjoint Spalart–Allmaras problem (using the methodology
described in this paper). As we expected, gradients computed with the complete adjoint Spalart–Allmaras
formulation provide an airfoil with a lower value of the drag coefficient than using the frozen viscosity
gradients. On the other hand, in Fig. 5 (right), the initial pressure distribution, and the optimized one are
shown for the adjoint Spalart–Allmaras case. In particular, the original drag coefficient was 0.0178, and the
final one is 0.0116.

D. 3D design using Free–Form deformation technique, and adjoint surface formulation

The objective of this numerical test is to study the viability of the Free–Form technique for the definition
of 3D design variables. A single–point minimization case is used to show the accuracy of the developed
continuous adjoint method for inviscid flows. The flow conditions are Mach number 0.8395 with angle of
attack 3.06 deg, and the selected wing is an ONERA-M6, only the upper surface will be resigned, and a total
of 30 design variable will be used. The governing equations are the Euler equations, so drag improvement
in this case means wave drag decrease.

Figure 6. Mach number distribution at iterations 0, 3, and 6 (upper), and control point position (FFD) at
iterations 0, 3, 6 (lower).

In Fig. 6 (upper) the Mach distribution for several optimization iterations is shown. At the last iteration,
the shock wave has disappeared. In Fig. 6 (lower) it is possible to appreciate the movement of the control
points of the FFD box.

After the minimization process, the new wing has a drag coefficient of 0.0029, which is a 25% of the original
ONERA M6 drag (inviscid computation). Finally, in Fig. 7, the convergence history of the optimization
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Figure 7. Optimization history for the redesign of an ONERA–M6 using Free–Form deformation, and adjoint
surface formulation.

problem is shown.

VI. Conclusions

In this work the continuous adjoint Spalart–Allmaras approach to aerodynamic design optimization
has been presented. The formulation that we have derived do not need the computation of second–order
derivatives of the flow variables, and once the adjoint variable has been computed, it only requires an
integration on the surface of the aerodynamical body.

The accuracy of the sensitivity derivatives that result from the application of the method developed in this
work has been assessed by comparison with finite-difference computations, which illustrate the importance
of the complete formulation instead of the Frozen viscosity strategy. Finally, an unconstrained minimization
case is shown, and a brief introduction to 3D design using Free–Form Deformation technique is also described.

The results presented here are very promising, but further numerical tests are necessary. In particular,
complex 3D configurations, and convergence issues are open research topics to aboard the industrialisation
of this continuous adjoint methodology.

VII. Appendix

In this appendix we give the main formulas required to compute the sensitivities discussed above.

A. Navier–Stokes equations

As usual in Navier–Stokes equations, system (1) consider separately convective terms, denoted by ~F c, and

viscous ones, denoted by ~F v1 and ~F v2. They are given by

~F ci =


ρvi

ρviv1 + Pδi1

ρviv2 + Pδi2

ρviv3 + Pδi3

ρviH

 , ~F v1
i =


·
τi1

τi2

τi3

vjτij

 , ~F v2
i =


·
·
·
·

Cp∂iT

 , i = 1, . . . , 3 (73)

where v1, v2, and v3 are the Cartesian velocity components, H is the fluid enthalpy, δij is the Kronecker
delta function (i.e. δij = 1 if i = j, δij = 0 otherwise), and

τij = ∂jvi + ∂ivj −
2

3
δij∇ · ~v

Recall that latin indexes i, j denote 3-D Cartesian coordinates, xi = (x, y, z), with repeated indexes implying
summation. In these formulas, Cp is the specific heat at constant pressure, T is the temperature, defined as

T =
P

Rρ
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and R is the gas constant, so that for an ideal gas
Cp
R = γ

(γ−1) with γ constant. In order to close the system

of equations, the dynamic viscosity is assumed to satisfy the Sutherland’s law

µdyn =
µ1T

3/2

T + µ2

where µ1 and µ2 are also specified constants.

B. Spalart–Allmaras turbulence model

In (2) we have considered a general framework for a one-equation turbulence modeling. In this section we
focus on the Spallart–Allmaras model for which explicit formulas for the adjoint formulation are obtained
below. In this case, the turbulent viscosity is computed from

µtur = ρν̂fv1, (74)

where the function fv1 is given by

fv1 =
χ3

χ3 + c3v1

, χ =
ν̂

ν
, ν =

µdyn
ρ

. (75)

Equations (74) and (75) require a new variable ν̂ which is obtained by solving (2) with

~T cv(U, ν̂) = −ν + ν̂

σ
∇ν̂ + ~vν̂ (76)

T s(U, ν̂, dS) = cb1Ŝν̂ − cw1fw

(
ν̂

dS

)2

+
cb2
σ
|∇ν̂|2. (77)

A number of constants required above and below are listed together

σ = 2/3 cb1 = 0.1355 cb2 = 0.622 κ = 0.41

cw1 =
cb1
κ2

+
1 + cb2
σ

cw2 = 0.3 cw3 = 2 cv1 = 7.1.

The production term Ŝ in (77) is defined as

Ŝ = |~ω|+ ν̂

κ2d2
S

fv2, ~ω = ∇× ~v, fv2 = 1− χ

1 + χfv1

where ~ω is the fluid vorticity and dS is the distance to the nearest wall.
Finally, the function fw in (77) is computed as

fw = g

[
1 + c6w3

g6 + c6w3

]1/6

, g = r + cw2(r6 − r), r =
ν̂

Ŝκ2d2
S

.

C. Linearized Navier–Stokes equations

In this section we compute ∂RU
∂U δU and ∂RU

∂ν̂ δν̂ in (14).

∂RU
∂U

δU = ∇( ~AcδU)−∇ ·
(
~F vk

∂µktot
∂U

δU + µktot ~A
vkδU + µktotD

vk∇δU
)

(78)

∂RU
∂ν̂

δν̂ = −∇ ·
(
~F vk

∂µktot
∂ν̂

δν̂

)
(79)

where

∂µ1
tot

∂U
=
∂µdyn
∂U

+
∂µtur
∂U

,
∂µ2

tot

∂U
=

1

Prd

∂µdyn
∂U

+
1

Prt

∂µtur
∂U

∂µ1
tot

∂ν̂
=
∂µtur
∂ν̂

,
∂µ2

tot

∂ν̂
=

1

Prt

∂µtur
∂ν̂
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and

∂µdyn
∂T

= µdyn
T + 3µ2

2T (T + µ2)
(80)

∂µdyn
∂U

=
∂µdyn
∂T

∂T

∂U
(81)

∂µtur
∂U

= ν̂fv1

(
1 +

3c3v1

χ3 + c3v1

)
∂ρ

∂U
− χfv1

3c3v1

χ3 + c3v1

∂µdyn
∂U

(82)

∂µtur
∂ν̂

= ρfv1

(
1 +

3c3v1

χ3 + c3v1

)
(83)

with
∂T

∂U
=

(γ − 1)

Rρ

(
|~v|2 − E,−v1,−v2,−v3, 1

)
,

∂ρ

∂U
= (1, 0, 0, 0, 0).

In (78) we have

~Ac =
(
Acx, A

c
y, A

c
z

)
, Aci =

∂ ~F ci
∂U

∣∣∣
U(x,y,z)

~Avk =
(
Avkx , A

vk
y , A

vk
z

)
, Avki =

∂ ~Fvki
∂U

∣∣∣
U(x,y,z)

Dvk =

 Dvk
xx Dvk

xy Dvk
xz

Dvk
yx Dvk

yy Dvk
yz

Dvk
zx Dvk

zy Dvk
zz

 , Dvk
ij =

∂ ~Fvki
∂(∂jU)

∣∣∣
U(x,y,z)


i, j = 1 . . . 3, k = 1, 2

Defining for convenience a0 = (γ − 1), φ = (γ − 1) |~v|
2

2 , then we have

Aci =


· δi1 δi2 δi3 ·

−viv1 + δi1φ vi − (a0 − 1)viδi1 v1δi2 − a0v2δi1 v1δi3 − a0v3δi1 a0δi1

−viv2 + δi2φ v2δi1 − a0v1δi2 vi − (a0 − 1)viδi2 v2δi3 − a0v3δi2 a0δi2

−viv3 + δi3φ v3δi1 − a0v1δi3 v3δi2 − a0v2δi3 vi − (a0 − 1)viδi3 a0δi3

vi (φ−H) −a0viv1 +Hδi1 −a0viv2 +Hδi2 −a0viv3 +Hδi3 γvi



Av1
i =



· · · · ·
−ηi1 ∂i

(
1
ρ

)
+ 1

3∂1

(
1
ρ

)
δi1 ∂1

(
1
ρ

)
δi2 − 2

3∂2

(
1
ρ

)
δi1 ∂1

(
1
ρ

)
δi3 − 2

3∂3

(
1
ρ

)
δi1 ·

−ηi2 ∂2

(
1
ρ

)
δi1 − 2

3∂1

(
1
ρ

)
δi2 ∂i

(
1
ρ

)
+ 1

3∂2

(
1
ρ

)
δi2 ∂2

(
1
ρ

)
δi3 − 2

3∂3

(
1
ρ

)
δi2 ·

−ηi3 ∂3

(
1
ρ

)
δi1 − 2

3∂1

(
1
ρ

)
δi3 ∂3

(
1
ρ

)
δi2 − 2

3∂2

(
1
ρ

)
δi3 ∂i

(
1
ρ

)
+ 1

3∂3

(
1
ρ

)
δi3 ·

vjπij vj∂j

(
1
ρ

)
δi1 + ζi1 + 1

ρτi1 vj∂j

(
1
ρ

)
δi2 + ζi2 + 1

ρτi2 vj∂j

(
1
ρ

)
δi3 + ζi3 + 1

ρτi3 ·



Av2
i = γ


· · · · ·
· · · · ·
· · · · ·
· · · · ·

1
a0
∂i

(
φ
ρ −

P
ρ2

)
−∂i

(
v1
ρ

)
−∂i

(
v2
ρ

)
−∂i

(
v3
ρ

)
∂i

(
1
ρ

)



Dv1
ii =

1

ρ


· · · · ·

−
(
1 + 1

3δi1
)
v1

(
1 + 1

3δi1
)

· · ·
−
(
1 + 1

3δi2
)
v2 ·

(
1 + 1

3δi2
)

· ·
−
(
1 + 1

3δi3
)
v3 · ·

(
1 + 1

3δi3
)

·
−|~v|2 − 1

3v
2
i

(
1 + 1

3δi1
)
v1

(
1 + 1

3δi2
)
v2

(
1 + 1

3δi3
)
v3 ·
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Dv1
ij =

1

ρ


· · · · ·

−viδj1 + 2
3vjδi1 δj1δi1 − 2

3δi1δj1 δj1δi2 − 2
3δi1δj2 δj1δi3 − 2

3δi1δj3 ·
−viδj2 + 2

3vjδi2 δj2δi1 − 2
3δi2δj1 δj2δi2 − 2

3δi2δj2 δj2δi3 − 2
3δi2δj3 ·

−viδj3 + 2
3vjδi3 δj3δi1 − 2

3δi3δj1 δj3δi2 − 2
3δi3δj2 δj3δi3 − 2

3δi3δj3 ·
− 1

3vivj vjδi1 − 2
3viδj1 vjδi2 − 2

3viδj2 vjδi3 − 2
3viδj3 ·

 (i 6= j)

Dv2
ii =

γ

ρ


· · · · ·
· · · · ·
· · · · ·
· · · · ·

1
a0

(
φ− P

ρ

)
−v1 −v2 −v3 1


Dv2
ij = 05×5 (i 6= j)

where tensors η̄, π̄ and ζ̄ in the definition of Av1
i are given by

ηij = ∂i

(
vj
ρ

)
+ ∂j

(
vi
ρ

)
− 2

3
δij∇ ·

(
~v

ρ

)
πij = vj∂i

(
1

ρ

)
+ vi∂j

(
1

ρ

)
− 2

3
δij ~v · ∇

(
1

ρ

)
= ηij −

1

ρ
τij

ζij = vj∂i

(
1

ρ

)
− vi∂j

(
1

ρ

)
+

1

3
vi∂j

(
1

ρ

)
.

D. Linearized Spalart–Allmaras turbulence model

Here we compute the terms corresponding to the linearized turbulence equation (15). Note that

∂Rν̂
∂U

δU = ∇ · (~F cvδU)− F sδU −Ms∇δU (84)

∂Rν̂
∂ν̂

δν̂ = ∇ ·
(
~Bcvδν̂ + Ecv∇δν̂

)
−Bsδν̂ −Es∇δν̂ (85)

∂Rν̂
∂dS

δdS = −KsδdS (86)

where Ms =
(
Ms
x,M

s
y ,M

s
z

)
, Ecv =

(
Ecvx , E

cv
y , E

cv
z

)
, Es =

(
Esx, E

s
y, E

s
z

)
.

The Jacobian matrices associated to the convective/viscous flux are given by

~Bcv =
∂ ~T cv

∂ν̂
= −∇ν̂

σ
+ ~v (87)

Ecvi =
∂ ~T cv

∂(∂iν̂)
= −ν + ν̂

σ
(88)

~F cv =
∂ ~T cv

∂U
= α

(
∂T

∂U

)T

∇ν̂ +


µdyn
σρ2 ∇ν̂ −

ν̂
ρ~v

ν̂
ρ I3

·

 , α = − 1

σρ

∂µdyn
∂T

. (89)

Here,
∂µdyn
∂T and ∂T

∂U are given in §VII.C, and I3 is the 3× 3 identity matrix.
Concerning the derivatives of the source term T s we have

Bs =
∂T s

∂ν̂
=

(
cb1Ŝ − 2cw1fw

ν̂

d2
S

)
− cw1

[
ν̂

dS

]2

fgwg
rrν̂ + Λ

(
Ŝfv2

(
fχv2 + fv1

v2 f
χ
v1

)
χν̂ + Ŝν̂

)
(90)

F s =
∂T s

∂U
= Λ

[
Ŝfv2

(
fχv2 + fv1

v2 f
χ
v1

)
χν
(
νT

∂T

∂U
+ νρ

∂ρ

∂U

)T

+
1

|~ω|
(∂i~v −∇vi) · ∂iN

]
(91)

Ks =
∂T s

∂dS
=

2cw1fwν̂
2

d3
S

+ ΛŜdS (92)
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Esi =
∂T s

∂(∂iν̂)
= 2

cb2
σ
∂iν̂ (93)

Ms
i =

∂T s

∂(∂iU)
=

1

|~ω|
Λ (∂i~v −∇vi) ·N (94)

with

Λ =
∂T s

∂Ŝ
= cb1ν̂ − cw1

[
ν̂

dS

]2

fgwg
rrŜ (95)

and where N in (91) and (94) is the 3× 5 matrix defined by δ~v = NδU , i.e.

N =
1

ρ

 −v1 1 · · ·
−v2 · 1 · ·
−v3 · · 1 ·

 .

Finally, the whole set of partial derivatives needed to compute (90)-(95) is the following

fgw =
∂fw
∂g

=
c6w3

g6 + c6w3

(
1 + c6w3

g6 + c6w3

)1/6

gr =
∂g

∂r
= 1 + cw2

(
6r5 − 1

)
rν̂ =

∂r

∂ν̂
=

1

Ŝκ2d2
S

rŜ =
∂r

∂Ŝ
= − ν̂

Ŝ2κ2d2
S

rdS =
∂r

∂dS
= − 2ν̂

Ŝκ2d3
S

Ŝfv2 =
∂Ŝ

∂fv2
=

ν̂

κ2d2
S

Ŝν̂ =
∂Ŝ

∂ν̂
=

fv2

κ2d2
S

ŜdS =
∂Ŝ

∂dS
= −2ν̂fv2

κ2d3
S

fχv2 =
∂fv2

∂χ
= − 1

(1 + χfv1)
2 fv1

v2 =
∂fv2

∂fv1
=

χ2

(1 + χfv1)
2

fχv1 =
∂fv1

∂χ
=

3χ2c3v1

(χ3 + c3v1)
2 χν̂ =

∂χ

∂ν̂
=

1

ν

χν =
∂χ

∂ν
= −χ

ν
νρ =

∂ν

∂ρ
= −µdyn

ρ2

νT =
∂ν

∂T
=

1

ρ

∂µdyn
∂T

.

E. Adjoint formulas

In this section we give explicit formulas for the adjoint operators and boundary conditions. These are
obtained from the identity (17), which is deduced from the following integration by parts∫

Ω

ΨT
U

(
∂RU
∂U

δU +
∂RU
∂ν̂

δν̂

)
=

∫
Ω

(AUUΨU )TδU +

∫
Ω

Aν̂UΨUδν̂

+

∫
S

~ϕ · (δP ~n− δσ̄ · ~n) +

∫
S

(~g1 · ~ϕ+ g2∂nψ5)δT +

∫
S

h3δS (96)∫
Ω

ψν̂

(
∂Rν̂
∂U

δU +
∂Rν̂
∂ν̂

δν̂ +
∂Rν̂
∂dS

δdS

)
=

∫
Ω

AUν̂ ψν̂δU +

∫
Ω

Aν̂ν̂ψν̂δν̂ +

∫
Ω

Adν̂ψdδν̂

+

∫
S

ψν̂g3∂n(δν̂) +

∫
S

ψν̂g4δP −
∫
S

ψν̂g5δT +

∫
S

1 + 2cb2
σ

(∂nν̂)
2
ψν̂δS (97)∫

Ω

ψd∇dS · ∇δdS = −
∫

Ω

∇ · (ψd∇dS) δdS −
∫
S

ψdδS (98)

where we have used ∂ndS = 1. Here, domain integrals on the right hand side contain the adjoint operators
given by

AUUΨU = −∇ΨT
U · ~Ac −∇ ·

(
∇ΨT

U · µktotDvk
)

+∇ΨT
U · µktot ~Avk +∇ΨT

U · ~F vk
∂µktot
∂U

(99)
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AUν̂ ψν̂ = −∇ψν̃ · ~F cv − ψν̂F s +∇ · (ψν̂Ms) (100)

Aν̂UΨU = ∇ΨT
U · ~F vk

∂µktot
∂ν̂

(101)

Aν̂ν̂ψν̂ = −∇ψν̂ · ~Bcv +∇ · (∇ψν̂ ·Ecv)− ψν̂Bs +∇ · (ψν̂Es) (102)

Adν̂ψν̂ = −Ksψν̂ (103)

Addψd = −∇ · (ψd∇dS) . (104)

On the other hand, the terms ~g1, g2, g3, g4, g5 and h3 appearing in the boundary integrals in (96)-(98)
are given by

~g1 = −∂µdyn
∂T

~n · τ̄ , g2 = Cpµ
2
tot, g3 = −ν

σ
(105)

g4 = ∂nν̂
µdyn
σρP

, g5 = ∂nν̂
1

σρ

(
∂µdyn
∂T

+
µdyn
T

)
h3 = −(ρψ1 + ρHψ5)(∂n~v · ~n) + ψ5~n · σ̄ · ∂n~v − ~n · Σ̄ϕ · ∂n~v

−ψ5σ̄ : ∇~v + µ2
totCp∇Sψ5 · ∇ST + ∂nν̂(~n · τ̄ · ~ϕ)

∂µtur
∂ν̂

(106)

where σ̄ : ∇~v = σij∂ivj , with

Σ̄ϕ = µ1
tot

(
∇~ϕ+∇~ϕT − Id

2

3
∇ · ~ϕ

)
.

Some of the terms in h3 above can be simplified. In particular, taking into account that ~v = 0 and
∇S~v = 0 on the obstacle surface, we have ∇~v = ∂jvi = ∂nvinj . Therefore

σ̄ : ∇~v = σij∂nvinj = ~n · σ̄ · ∂n~v on S,

and the second and fourth terms in (106) cancel.
On the other hand, the continuity equation yields ∇ · ~v = 0 on S. Hence

0 = ∇ · ~v = ∂ivi = ∂nvini = ∂n~v · ~n on S,

and the first term in (106) also cancels.
In the same way, one may notice that also ∂µtur

∂ν̂ = 0 on S, since fv1 = 0 on the obstacle surface. Thus,
the term h3 reads

h3 = −~n · Σ̄ϕ · ∂n~v + µ2
totCp∇Sψ5 · ∇ST. (107)

Finally, adding the three terms in (96)-(98) we easily obtain (17) with

ĝ = h3 +
1 + 2cb2

σ
(∂nν̂)

2
ψν̂ . (108)
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