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This paper describes an algorithm for PDE-constrained optimization that controls nu-
merical errors using error estimates and grid adaptation. A key aspect of the algorithm is
the use of adjoint variables to estimate errors in the first-order optimality conditions. Mul-
tilevel optimization is used to drive the optimality conditions and their estimated errors
below a specified tolerance. The error estimate requires two additional adjoint variables,
but only at the beginning and end of each optimization cycle. Moreover, the adjoint sys-
tems can be formed and solved with limited additional infrastructure. The approach is
general and can accommodate both reduced-space and full-space (i.e. one-shot) formula-
tions of the optimization problem. The algorithm is illustrated using the inverse design of
a nozzle using the quasi-one-dimensional Euler equations.

I. Introduction

Many aerospace design problems involve complex phenomena that cannot be predicted accurately with
simple models. Examples of such phenomena include the sonic-boom from supersonic aircraft, the noise
generated from an open-rotor engine, and the unstart of a scramjet engine. In order to perform optimal
design in these contexts, engineers must rely on the numerical solution of partial-differential equations
(PDEs) to model the complex physics. This is one of the motivations behind the field of PDE-constrained
optimization in aerospace engineering.

The value of PDE-constrained optimization has been demonstrated for many aerospace problems. An
example is aerodynamic shape optimization, which has been used for airfoil1–5 and both wing and aircraft
design.6–10 In aerodynamic shape optimization, a parameterized shape is manipulated by an optimization
algorithm to improve some objective, e.g. minimize drag for a fixed lift; this objective is predicted using the
solution of the discretized Euler, Navier-Stokes, or RANS equations.

The accuracy of the discretization plays a significant role in PDE-constrained optimization, since numer-
ical errors in the discrete solution can pollute quantitative measure of the objective. Of course, this is also
an issue for individual numerical analyses. However, unlike a single numerical analysis, there is the danger
that the optimization algorithm will manipulate the numerical errors in order to “improve” the objective.
Consequently, the optimized design may be a reflection of the errors in the discretization rather than the
physics of the problem.

The performance of the design can be verified, in some cases, by performing a mesh refinement study;
see, for example, Ref. 11. At best, this can only tell us that the objective was accurately predicted by the
coarse discretization. On the refined grid the optimality conditions may not be satisfied, and the design may
not be a local optimum for the continuous problem.

Strategies exist to estimate and control numerical errors in a systematic way. For example, a posteriori
output error estimates and adaptation based on the adjoint variables have been shown to be particularly
effective for engineering problems that involve functionals.12–17

In contrast to single analyses, incorporating adjoint-based error estimation and control into PDE-constrained
optimization has received much less attention. Becker and Rannacher14 propose using the Lagrangian as the
output of interest during optimization; this is also the approach taken by Lu in his thesis.18 The Lagrangian
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is attractive in this context, because the primal and adjoint variables have symmetric relationships in the
error estimate and no additional adjoint systems need to be solved.

In this paper we consider an alternative to the Lagrangian for the output of interest during optimization:
the norm of the objective gradient. This choice is motivated by following thought experiment. Suppose we
have estimated and controlled the error in the Lagrangian to some specified tolerance. Nevertheless, the
gradient of the objective/Lagrangian can remain inaccurate. In this scenario, the optimization algorithm
may find a spurious local optimum or the location of the optimum may be incorrect. Another possibility
is that the gradient-norm error may be small, but the Lagrangian error may be large. In this scenario, we
have located the local optimum, but then perform unnecessary refinement to improve the accuracy of the
Lagrangiana.

We show that the gradient-norm error estimates require the solution of two additional adjoint systems;
however, these adjoint problems are straightforward to solve if the infrastructure for the adjoint solver is
already available. Moreover, we propose a multilevel optimization framework in which these additional
adjoint problems are only needed at the beginning and end of each optimization cycle, so their added
computational cost is limited.

The paper is organized as follows. We begin by reviewing the generic PDE-constrained optimization
problem and describe the reduced-space quasi-Newton algorithm adopted for this work. Section III covers the
error estimation process: first, we briefly review the adjoint-weighted residual method for general functionals,
and, subsequently, we specialize the method to estimating errors in the gradient-norm and verify these
error estimates. In Section IV, we propose an optimization framework that can use gradient-norm error
estimates and illustrate this framework using an inverse-design problem on a quasi-one-dimensional nozzle
flow. Conclusions can be found in Section V

II. PDE-constrained Optimization

A. Problem Formulation

Ideally, we would like to solve the following nonlinear PDE-constrained problem that involves an infinite-
dimensional state variable:

minimize J (x,U), x ∈ Rm, U ∈ V,

subject to R(U ,Z;x) = 0, ∀ Z ∈ V,
(1)

where V denotes a function space appropriate for the given PDE. The PDE is represented by the semilinear
form R : Rm × V × V → R, which corresponds to the weak formulation of the PDE. We assume that the
objective function, J : Rm×V → R, depends explicitly on the state variable U ∈ V and a finite-dimensional
control, or design, variable x ∈ R

m.
Of course, we cannot solve the PDE constraint in (1) analytically (in general), so we must discretize the

constraint and seek a finite-dimensional solution. Consequently, the optimization problem (1) is reformulated
as follows:

PDEOpt

minimize Jh(x, uh), x ∈ R
m, uh ∈ Vh,

subject to zThRh(uh;x) = 0, ∀ zh ∈ Vh. (2)

Here, the function space V has been replaced by the finite-dimensional vector space Vh.

B. Solution Strategy Overview

There are several approaches that are suitable for solving the problem PDEOpt. When the problem is
sufficiently smooth, gradient-based approaches are attractive because they are highly efficient at finding local
optima. In this section, we briefly describe the reduced-space gradient-based algorithm used in this work;
however, the proposed gradient-norm error estimates are compatible with other gradient-based algorithms,
such as the the full-space, i.e. one-shot, approach.

aThis scenario may not be an issue in practice, since we may want an accurate objective anyway.
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The reduced-space approach to PDE-constrained optimization is popular in aerodynamic shape opti-
mization.8,9, 19,20 Reduced-space algorithms recast PDEOpt as a minimization problem that depends only
on the design variables x:

minimize Jh (x, uh(x)) , x ∈ R
m, (3)

where uh is defined as an implicit function of x through the discretized PDE constraint (2). In other words,
the PDE constraint is enforced at each optimization iteration.

The reduced-space problem (3) is solved using the limited-memory BFGS21 quasi-Newton method with
line searches based on the strong-Wolfe conditions.22 BFGS constructs an approximation to the Hessian of
Jh using changes in the gradient and the design variables from one iteration to the next. The necessary
objective gradients can be computed using finite-differences, algorithmic differentiation, or adjoint variables.
We use the adjoint variables,19,23 because they produce accurate gradients in a computationally efficient
manner (the gradient cost is essentially independent of the number of design variables).

The adjoint-based gradient is derived by introducing the Lagrangian

Lh(x, uh, ψh) ≡ Jh(x, uh) + ψThRh(uh;x).

Setting the derivatives of Lh to zero, we arrive at the first-order optimality conditions

∂ψh
Lh = 0 ⇒ vThRh(x, uh) = 0, ∀ vh ∈ Vh. (2)

∂uh
Lh = 0 ⇒ vTh

[

(∂uh
Jh)

T
+ (∂uh

Rh)
T
ψh

]

= 0, ∀ vh ∈ Vh, (4)

∂xLh = 0 ⇒ ∂xJh + ψTh ∂xRh = 0. (5)

The first optimality condition recovers the discretized PDE constraint (2). The optimality condition (4) is
the discrete adjoint equation. Once uh and ψh are determined using the first two conditions, the gradient
of objective can be computed from the expression on the left-hand-side of (5). Note that the gradient of
objective is non-zero in general, and satisfying condition (5) is the task of the unconstrained optimization
algorithm.

Convergence of the reduced-space problem is determined using a norm of the gradient. Specifically, the
problem (3) is considered converged if

‖∂xLh‖ = ‖∂xJh + ψTh ∂xRh‖ ≤ ǫ, (6)

where ǫ is a user-defined tolerance. We can be confident that the variable x is close to a local optimal design
of PDEOpt if it satisfies the inequality (6), for sufficiently small ǫ. Unfortunately, satisfying this convergence
test does not guarantee that x is a solution of the continuous problem (1), because discretization errors are
present in (6). Estimating and controlling the errors in the convergence criterion will provide confidence
that x is optimal not only for the discrete problem but also for the continuous problem of interest. This is
the topic of the next section.

III. Estimating the Error in First-order Optimality

This section begins with a brief review of the adjoint-weighted residual method of estimating output
errors; for additional details on this method see Refs. 12–15,17,24. Subsequently, we show how this method
can be used to estimate errors in the norm of the objective gradient.

A. Adjoint-weighted Residual Method

Suppose we want to evaluate the functional J (U), where the function U is the solution of a PDE. As
discussed earlier, in general we cannot solve the PDE explicitly, so we discretize the problem and compute
the approximations uh ≈ U and Jh(uh) ≈ J (U). The adjoint-weighted residual method provides an estimate
of the error between the discrete and continuous functionals:

δJh ≡ Jh(uh)− J (U).

We will review this error estimation method in the context of a summation-by-parts (SBP) finite-difference
discretization.25 Although the details differ from one discretization to another, the general error estimation
procedure is similar.

3 of 15

American Institute of Aeronautics and Astronautics



Consider a uniform computational mesh with spacing h = 1/n, and let uh ∈ R
n+1 be the solution of the

discretized PDE on this mesh. The discretized PDE is represented by the Galerkin statement

zThRh,p(uh) = 0, ∀ zh ∈ R
n+1, (7)

where Rh,p denotes the residual. For now, we have excluded the dependence of the residual on the design
variable x. The subscript p indicates that the discretization uses a p-order accurate SBP operator; to be
precise, the operator is 2p-order accurate in the interior and p-order accurate at a finite number of boundary
nodes, resulting in a p+1 order accurate solution uh. Geometric terms in the functional are also discretized
with the same SBP operator. The discrete functional is denoted by Jh,p(uh) and is 2p-order accurateb.

The adjoint-weighted residual estimate for the error in Jh,p(uh) is given by25

δJh,p ≡ Jh,p(uh)− Jh,q(uh)− ψThRh,q(uh) (8)

= δJh,p +O(h2p−r+3),

where ψh is the adjoint variable, i.e. the solution of (4). The integer r ≤ 2 is the order of the derivative
operator present in the continuous PDE. In particular, the estimate is O(h2p+2) accurate for hyperbolic
problems and O(h2p+1)-order accurate for second-order elliptic and parabolic problems.

The error estimate (8) consists of two parts. The first part, Jh,p(uh)−Jh,q(uh), is the difference between
the functional evaluated with a p-order accurate SBP operator and a q-order accurate SBP operator, q > p.
This first part accounts for errors in geometric quantities (e.g. surface normals, metric Jacobians, etc).

The second part of the error estimate is the adjoint-weighted residual ψThRh,q(uh). Here, ψh is the discrete
adjoint variable satisfying the dual (adjoint) linear system

zTh Sh,p(ψh;uh) ≡ ψThR
′

h,p[uh](zh) + J ′

h,p[uh](zh) = 0, ∀ zh ∈ R
n+1. (9)

The prime indicates Fréchét linearization with respect to the variable in the square brackets; this operation
is equivalent to partial differentiation for the present SBP finite-difference discretizations. For example,

ψThR
′

h,p[uh](zh) ≡ ψTh

[

∂Rh,p
∂uh

]

zh.

The dual problem (9) has the same p-order accurate boundary closure as the primal problem (7). While
ψh and uh are evaluated using p-order accurate discretizations, they are substituted into Rh,q in the error
estimate (8), which uses a q-order accurate SBP operator.

B. Gradient-norm Error Estimation

The output of interest during optimization is the norm of the objective gradient. This norm appears in
the first-order optimality condition (6), which provides a measure of how close the design is to a stationary
point and is used to decide when to terminate the optimization. However, in PDE-constrained optimization,
discretization errors affect both the objective and its gradient. To what extent can we trust the norm of the
(discretized) gradient as a criterion for convergence?

If we had some estimate for the error in the gradient norm, we could construct a more reliable criterion
for convergence. Fortunately, the adjoint-weighted residual method can be readily applied to gradient-norm
error estimation. To use the method, we need only recognize that the “residual” for the gradient-norm is a
compound residual consisting of the primal and dual problems.

Let Gh,p ∈ R
m be the gradient of some output functional Jh,p with respect to the design variables x ∈ R

m.
Using the reduced-space approach, recall that the gradient can be expressed as (see (5))

Gh,p(x, uh, ψh) = ∂xJh,p(x, uh) + ψTh ∂xRh,p(uh;x),

where the primal (uh) and adjoint (ψh) variables satisfy the equations (7) and (9), respectively. We will
eventually consider error estimates for both the L2- and infinity-norm of the gradient. For now, we will use
Nh,p to denote a generic norm of the gradient Gh,p.

‖Gh,p‖ ≡ Nh,p

(

G
(1)
h,p, G

(2)
h,p, . . . , G

(m)
h,p

)

= Nh,p(x, uh, ψh),

bThis superconvergence assumes that the problem is discretized in a dual-consistent manner.18,26,27
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where G
(i)
h,p is the ith component of Gh,p.

We want an error estimate for the norm Nh,p. To use the adjoint-weighted residual method, we must
identify the dual problems corresponding to this functional and the governing equations (7) and (9). To
simplify the process, recognize that the test functions for the primal and dual problems are independent, so
we can write a single residual equations for both problemsc:

vThRh,p(uh;x) + zTh Sh,p(ψh;x, uh) = 0, ∀ vh, zh ∈ R
n+1.

Consider infinitesimal perturbations δuh, δψh, δRh,p and δSh,p applied to the state, adjoint, and their
respective residuals. Using the compound residual, these perturbations are related by equation (see, for
example, Ref. 17 for a review)

δRh,p(vh) + δSh,p(zh) + vThR
′

h,p[uh](δuh;x) + zTh S
′

h,p[uh](ψh;x, δuh) + zTh S
′

h,p[ψh](δψh;x, uh) = 0,

∀ vh, zh ∈ R
n+1. (10)

The adjoint variables for the gradient-norm functional are defined as the sensitivity of Nh,p to the compound
residual perturbation. Specifically, if wh and λh denote these adjoint variables, then

δNh,p ≡ Nh,p(x, uh + δuh, ψh + δψh)−Nh,p(x, uh, ψh) = δRh,p(λh) + δSh,p(wh).

Linearizing the norm about (uh, ψh) we find

N ′

h,p[uh](x, δuh, ψh) +N ′

h,p[ψh](x, uh, δψh) = δRh,p(λh) + δSh,p(wh). (11)

Substituting wh for zh and λh for vh in the expression for the compound residual perturbation (10) and
using the result to replace δRh,p(λh) + δSh,p(wh) in (11), we have

N ′

h,p[uh](x, δuh, ψh) +N ′

h,p[ψh](x, uh, δψh)

= −λThR
′

h,p[uh](δuh;x)− wTh S
′

h,p[uh](ψh;x, δuh)− wTh S
′

h,p[ψh](δψh;x, uh)

Finally, the above equation should be true for arbitrary perturbations δuh and δψh; thus, we arrive at the
following linear systems for the adjoint variables of the gradient-norm.

wTh S
′

h,p[ψh](zh;x, uh) = −N ′

h,p[ψh](x, uh, zh), ∀ zh ∈ R
n+1 (12)

λThR
′

h,p[uh](zh;x) = −N ′

h,p[uh](x, zh, ψh)− wTh S
′

h,p[uh](ψh;x, zh), ∀ zh ∈ R
n+1 (13)

The linear system (12) depends only on wh while (13) depends on both wh and λh. Consequently, (12)
is solved first and, subsequently, wh is substituted into (13) to solve for λh. Once these adjoint variables are
available, they can be substituted into the gradient-norm error estimate, which follows from (8).

δNh,p ≡ Nh,p(x, uh, ψh)−Nh,q(x, uh, ψh)− λThRh,q(uh;x)− wTh Sh,q(ψh;x, uh)

As with the functional error estimate, Nh,q denotes the gradient (5) evaluated with the q-order accurate SBP
operator. Similarly for the residuals Rh,q and Sh,q. The gradient-norm error estimate will have the same
asymptotic convergence rate as the functional error estimate, i.e. h2p+2 for hyperbolic problems and h2p+1

for second-order elliptic and parabolic problems.

C. A Closer Look at the Gradient-norm Adjoint Equations

The adjoint linear systems (12) and (13) seem onerous to evaluate and solve, but closer inspection reveals
that these equations are less daunting than they first appear. Consider their respective system matrices.
The ith row of the matrix in (12) can be determined by making the choice zh = ei, where ei is the i

th column
of the identity matrix as follows:

wTh S
′

h,p[ψh](ei;x, uh) =
∂

∂α

[

wTh Sh,p(ψh + αei;x, uh)
]

∣

∣

∣

∣

α=0

=
∂

∂α

[

(ψh + αei)
TR′

h,p[uh](wh;x) + J ′

h,p[uh](wh;x)
]

∣

∣

∣

∣

α=0

= eTi

[

∂Rh,p
∂uh

]

wh.

cWe are creating a block vector of residuals.
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We recognize the system matrix multiplying wh in (12) as simply the Jacobian of Rh,p evaluated at uh.
Similarly, setting zh = ei in (13) we find

λThR
′

h,p[uh](ei;x) =
∂

∂α

[

λThRh,p(uh + αei;x)
]

∣

∣

∣

∣

α=0

= λThR
′

h,p[uh](ei;x)

= eTi

[

∂Rh,p
∂uh

]T

λh.

The matrix multiplying λh is the transposed Jacobian of Rh,p.
The infrastructure necessary to solve a linear system involving the transposed Jacobian is readily available

in optimization algorithms that use the adjoint-approach to compute the gradient. The infrastructure for
solving a system involving the Jacobian matrix itself, e.g. (12), is less common — notwithstanding Newton-
based solvers for the primal problem. However, much of the machinery used to solve the transposed-Jacobian
system can be adapted. Indeed, building and solving the Jacobian system is straightforward in comparison.
For example, Jacobian-vector products needed in Krylov iterative methods can be constructed using finite-
differences, the complex-step method, or the forward-mode of algorithmic differentiation.

Next we consider the right-hand sides of the linear systems (12) and (13). For the ith row of (12) we
have (recalling the gradient definition (5))

N ′

h,p[ψh](x, uh, ei) =
∂

∂α
[Nh,p(x, uh, ψh + αei)]

∣

∣

∣

∣

α=0

=

m
∑

j=1

(

∂Nh,p

∂G
(j)
h,p

)

∂

∂α

[

G
(j)
h,p(x, uh, ψh + αei)

]

∣

∣

∣

∣

α=0

=
m
∑

j=1

(

∂Nh,p

∂G
(j)
h,p

)

(

eTi
∂Rh,p
∂xj

)

.

This is simply the product between the sensitivity of the norm to the gradient components and the sensitivity
of the primal residual to the design variables. The former is easy to compute while the latter is available in
any adjoint-based optimization framework.

The right-hand side of (13) consists of two terms. The first term involves the gradient-norm Nh,p, and
its ith component is given by

N ′

h,p[uh](x, ei, ψh) =
∂

∂α
[Nh,p(x, uh + αei, ψh)]

∣

∣

∣

∣

α=0

=

m
∑

j=1

(

∂Nh,p

∂G
(j)
h,p

)

∂

∂α

[

G
(j)
h,p(x, uh + αei, ψh)

]

∣

∣

∣

∣

α=0

=

m
∑

j=1

(

∂Nh,p

∂G
(j)
h,p

)

(

∂2Jh,p
∂uh∂xj

+ ψTh
∂2Rh,p
∂uh∂xj

)

ei. (14)

The second term of the right-hand side of (13) involves the dual residual Sh,p. The ith component of this
term is

wTh S
′

h,p[uh](ψh;x, ei) =
∂

∂α

[

wTh Sh,p(ψh;x, uh + αei)
]

∣

∣

∣

∣

α=0

=
∂

∂α

{

ψThR
′

h,p[uh + αei](wh;x) + J ′

h,p[uh + αei](wh;x)
}

∣

∣

∣

∣

α=0

=
∂

∂uh

(

ψTh
∂Rh,p
∂uh

wh +
∂Jh,p
∂uh

wh

)

ei. (15)

We see that (14) and (15) require second-order derivatives of the objective and residual Rh,p; however,
these Hessian components appear in products with vectors, so they do not need to be explicitly formed and
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stored. The necessary Hessian-vector products can be computed by applying finite-difference approximations,
the complex-step method,28,29 or the forward-mode of algorithmic differentiation30 to the adjoint residual
Sh,p.

To illustrate this, we consider the use of finite-difference approximations to compute the right-hand-side
of (13). An approximation to (14) is given by

N ′

h,p[uh](x, ei, ψh) =
Sh,p(ψh;x+ ǫy, uh)− Sh,p(ψh;x, uh)

ǫ
+O(ǫ) (16)

= yj

(

ψTh
∂2Rh,p
∂uh∂xj

+
∂2Jh,p
∂uh∂xj

)

+O(ǫ)

where the components of y are defined by

yj ≡
∂Nh,p

∂G
(j)
h,p

.

For an approximation to (15) we perturb the primal variable uh appearing in Sh,p:

wTh S
′

h,p[uh](ψh;x, ei) =

[

Sh,p(ψ;x, uh + ǫwh)− Sh,p(ψ;x, uh)

ǫ

]

i

+O(ǫ) (17)

=

[

ψTh
∂2Rh,p
∂u2h

wh +
∂2Jh,p
∂u2h

wh

]

i

+O(ǫ).

Thus, the right-hand side of (13) can easily be computed using the above forward-difference approximations,
provided the dual residual Sh,p can be computed for a given uh, ψh and x. Granted, choosing ǫ such that
the approximations are accurate often requires trial-and-error, and the finite-difference approach may fail
entirely for poorly scaled problems. In such cases, complex-step or forward-mode algorithmic differentiation
are reliable alternatives.

D. Error Estimate Verification

We verify the proposed gradient-norm error estimates using the inviscid nozzle problem. The flow is modelled
using the quasi-one-dimensional Euler equations. If A(x) denotes the nozzle cross-sectional area, then the
governing equations are

∂F

∂x
− G = 0, ∀ x ∈ [0, 1], (18)

where the flux and source are given by

F =







ρuA

(ρu2 + p)A

u(e+ p)A






, and G =







0

pdA
dx

0






,

respectively. The unknown variables are the density, ρ, momentum per unit volume, ρu, energy per unit
volume, e, and pressure, p. The underdetermined system is closed using the ideal gas law equation of state
for the pressure: p = (γ − 1)(e− 1

2ρu
2).

Boundary conditions at the inlet and outlet are provided by the exact solution, which is determined using
the Mach relations. The stagnation temperature and pressure are 300K and 100, 000 kPa, respectively. The
specific gas constant is taken to be 287 J/(kg K) and the critical nozzle area is A∗ = 0.8. For the remaining
discussion, the equations and variables are nondimensionalized using the density and sound speed at the
inlet.

The nozzle area is parameterized using a cubic b-spline consisting of 22 control points and an open
uniform knot vector. The control points at the ends of the nozzle are fixed such that the area satisfies
A(0) = 2 and A(1) = 1.5. Consequently, there are 20 design variables. For the purposes of verifying the
error estimate, these remaining control points are set such that the nozzle area is a cubic function whose
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Figure 1. Pressure and Mach number (left) for the error estimate verification, and the adjoint variables (right)
corresponding to the inverse-design functional

minimum area of 1 is located at x = 0.5. Figure 1(a) shows the pressure and Mach number corresponding
to this nozzle area and the given stagnation values.

The quasi-one-dimensional Euler equations are discretized using a second-order accurate (i.e. p = 1)
SBP scheme, with boundary conditions imposed weakly using penalty terms.31,32 Scalar fourth-difference
artificial dissipation is added to prevent oscillatory solutions. The discretized Euler equations are solved
using a Newton-GMRES algorithm.33,34 GMRES35 is preconditioned using an LU factorization of a first-
order accurate discretization based on nearest-neighbours. The linear adjoint problems are also solved using
GMRES with the appropriate LU or UTLT factorized first-order preconditioner.

The objective function is based on an inverse problem for the pressure:

J =

∫ 1

0

1

2
(p− ptarg)

2 dx, (19)

where the target pressure is the constant ptarg = 1/γ. The objective function is discretized using a quadrature
based on the SBP norm. To compute the gradient-norm error estimate, a third-order accurate (i.e. q = 2)
SBP scheme is adopted. The adjoint variables for this objective function are plotted in Figure 1(b).

Before verifying the accuracy of the gradient-norm error estimates, let us briefly investigate the adjoint
variables wh and λh associated with the L2- and infinity-norm. Figure 2 plots these variables for the present
problem. The most salient feature is the localized nature of wh corresponding to the infinity-norm. However,
this compact support derives from the compact support of the b-spline basis functions, and it is not a general
property of wh.

Error estimates for ‖Gh,p‖2 and ‖Gh,p‖∞ are shown in Figures 3(a) and 3(b), respectively, for a sequence
of 32 uniform grids with nodes n = 21, 41, 61, . . . , 641. The figures compare the error estimates with the
actual error; the actual error is based on a solution from a fourth-order accurate discretization on a grid
with n = 2561 nodes. The figures also plot the difference between the actual error and the estimated error,
which reveals the rate of convergence of the error estimate.

The results show that the error estimates for both the L2- and infinity-norms of the gradient are accurate
for this problem, with the exception of the coarsest grid (n = 21 nodes). The error estimate for the L2-norm
has the predicted fourth-order convergence rate. The estimate for the infinity-norm shows some noise on the
finer grid levels. The index of the gradient component with largest absolute value is likely changing with
refinement. Nevertheless, the error estimate remains effective for this problem.

Finally, we repeated the error-estimate verification using the finite-difference approximations (16) and (17)
to compute the right-hand-side of the adjoint system (13). We found that the finite-difference approximations
had minimal impact on the accuracy of the error estimates. For completeness, results from these tests are
provided in Appendix A.
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(d) adjoint λh for ‖Gh,p‖∞

Figure 2. Adjoint variables corresponding to the L2-norm of the gradient (left) and the infinity-norm of the
gradient (right)
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(a) Error and estimate for ‖Gh,p‖2
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Figure 3. Error and error estimate in ‖Gh,p‖2 (left) and ‖Gh,p‖∞ on a sequence of grids. Also shown is the
difference between the error and error estimate.
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IV. Optimization With Error Estimation and Control

A. Algorithm Overview

There are several possible ways to incorporate gradient-norm error estimates into an optimization framework.
In Algorithm 1, we propose a multilevel optimization that uses the error estimates at the beginning and end
of each cycle.

At the beginning of level l, the gradient-norm error is estimated and used to define the tolerance that mea-
sures convergence of the optimization on that level (line 5 of the algorithm). In particular, the optimization
at level l is considered converged if

Nhl,p(x) ≤ τδNhl,p(xl),

where δNhl,p(xl) is the gradient-norm error estimate for the initial design xl at level l. The parameter τ > 1
is used to help prevent the gradient-norm from becoming smaller than its error: if the norm becomes smaller
than its error, the optimization will target numerical errors rather than locating the desired local optimum.

A new error estimate is computed for the gradient-norm of the design x produced by the optimization
on level l (see line 6). The sum of this error estimate and the gradient-norm is used to determine if the
analytical first-order optimality conditions are sufficiently satisfied. Let Nh0,p(x0) denote the gradient norm
of the initial design on the initial grid. If the inequality

Nhl,p(x) + δNhl,p(x) ≤ ǫNh0,p(x0), (20)

is satisfied, and ǫ ∈ (0, 1) is sufficiently small, we can be confident that the design x accurately approximates
a local optimum for the analytical problem.

Algorithm 1: Optimization with Gradient-Norm Error Estimation and Control

choose τ ≥ 1 and ǫ ∈ (0, 1)1

choose initial value for design variables, x02

for l = 0, 1, 2, . . . do3

compute gradient-norm error estimate: δNhl,p(xl)4

find x such that Nhl,p(x) ≤ τδNhl,p(xl) call optimization algorithm5

recompute gradient-norm error estimate: δNhl,p(x)6

if Nhl,p(x) + δNhl,p(x) ≤ ǫNh0,p(x0) then check for multilevel convergence7

exit loop8

else9

adapt grid10

end11

interpolate solution (and adjoints, if necessary)12

set xl+1 = x13

end14

B. Error Control

If the criterion (20) is not satisfied by the optimized design produced in iteration l, then we must adapt the
grid to reduce the gradient-norm error. For this work we use a uniform refinement based on a simple model
for the error. More sophisticated approaches based on the remaining error in the adjoint-weighted residual
method16,36 should be considered for more complex two- and three-dimensional domains.

For an SBP finite-difference discretization with a p-order accurate boundary closure, the functional will
be 2p order accurate for the dual-consistent discretizations considered here.27 Thus, a simple model for the
error in a functional is

δJh,p ≡ Jh,p(uh)− J (U)

≈ αh2p
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Approximating the true error, δJh,p, by the error estimate, δJh,p, we can solve for α in the above: α =
δJh,p/h

2p. Next, we compute a target mesh spacing h∗, such that the error model is below the convergence
tolerance ǫNh0,p(x0) divided by τ :

h∗ ≡

(

ǫNh0,p(x0)

ατ

)
1

2p

.

Dividing the desired convergence tolerance by τ helps ensure that the error estimates on the new grid remain
a factor of τ smaller than the gradient norm.

Finally, h∗ is used to compute the number of nodes on the subsequent optimization level:

nl+1 = min

(⌈

1

h∗

⌉

+ 1, 4(nl − 1) + 1

)

.

The above formula for nl+1 contains a safeguard to prevent excessive refinement caused by inaccurate error
estimates on coarse grids. In the following example, this safeguard was used only at the end of level 1.

C. Results

The multilevel optimization framework is illustrated using an inverse design of a quasi-one-dimensional nozzle
flow. The governing equations and discretization are the same as those used in Section III.D. The nozzle
area is parameterized using 7 cubic b-spline control points. As before, the two control points at the inlet
and outlet of the domain are fixed such that A(0) = 2 and A(1) = 1.5, respectively. Thus, there are 5 design
variables parameterizing the interior shape of the nozzle.

The target nozzle area is the cubic function of x that passes through the inlet and outlet areas and has a
local minimum at x = 0.5 given by A(0.5) = 1. This same nozzle was used in the error-estimate verification.
The initial design x0 is a nozzle with linearly varying area between the inlet and outlet.

The target area is used, together with the Mach relations for the nozzle, to define the target pressure
ptarg appearing in the inverse-design objective (19). The resulting target pressure corresponds to the ana-
lytical solution and is not achievable with a finite number of nodes. This makes the inverse design problem
well-suited to verifying the optimization framework, because the objective Jh,p should tend to zero with
refinement.

For a baseline result, we perform the inverse design on a fixed grid with 9 nodes. Figures 4(a) and
4(b) show the functional and L2-norm of the gradient at each iteration of the optimization. The figures
include the approximate values Jh,p and Nh,p, computed using the p = 1 (second-order) discretization, as
well as “exact” values, estimated using a uniformly refined grid with 4 times the number of nodes and a
p = 3 (fourth-order) discretization. Examining the gradient-norm history, we see that the optimization is
manipulating numerical errors beyond iteration 11; in other words, the computational effort expended from
iteration 12 onward is wasted.

Next, we present the results from the multilevel optimization. The tolerance used to determine conver-
gence in Algorithm 1 was set to ǫ = 10−3, and we set τ = 10 to help keep the gradient-norm error smaller
than the gradient-norm. Figures 5(a) and 5(b) plot the history of the functional and gradient norm during
the multilevel process. Recall that after the level 1 optimization, subsequent optimization cycles are initiated
with the previous level’s optimal design; consequently, we observe that each optimization cycle requires fewer
iterations than the previous. As with the fixed-grid results, the figures compare the approximate values of
Jh,p and Nh,p with their “exact” values. In contrast with the fixed-grid results, we see that the exact values
are driven toward zero, as desired.

In general, an analytical solution will not be available to verify the accuracy of the gradient-norm.
This brings us to the gradient-norm error estimates, plotted in Figure 6. To produce this plot, we have
computed the gradient-norm error and error estimate at each optimization iteration; this was done for
illustrative purposes only, and we do not advise computing the error estimates at every iteration. As the
figure demonstrates, the error estimates track the true gradient-norm error well. The error estimate is least
effective on the coarse grid used in level 1, which is not surprising given only 9 nodes are used with a
second-order discretization.

Comparison of Figures 6 and Figure 5(b) shows that the gradient-norm error remains approximately one
order of magnitude smaller than the gradient-norm, which was the target ratio defined by τ . Thus, we can be
confident that the optimization process is not expending unnecessary effort manipulating numerical errors.
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Figure 4. Computed and exact functional values (left) and L2 norm of the gradient (right) at each iteration
of the fixed-grid inverse design. The functional error is also included in Figure 4(a).
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Figure 5. Computed and exact functional values (left) and L2 norm of the gradient (right) at each iteration
of the optimization process. The functional error is also included in Figure 5(a).
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At the conclusion of the optimization, the sum of the gradient-norm error and the gradient norm is below
the desired tolerance of 10−3Nh0,p(x0) ≈ 10−6.

Finally, we examine the effectiveness of the multilevel optimization in recovering the target pressure and
nozzle area. Figure 7(a) plots the pointwise error between the target and computed pressure at the end of
each optimization cycle. Figure 7(b) is an analogous plot for the pointwise error between the target and
computed nozzle area. Both figures demonstrate that the error in the pressure and area are reduced as the
optimization progresses, albeit in an averaged rather than pointwise sense. Recall that the nozzle area at
the ends of the domain nozzle is fixed, so there is no error in the area at the corresponding nodes.

Figures 7(a) and 7(b) also indicate the number of nodes at each optimization level. We begin the
optimization using a relatively coarse grid with 9 nodes (level 1). The subsequent levels contain 33 nodes
(level 2), 111 nodes (level 3), and 99 nodes (level 4). Level 4 has fewer nodes than level 3, because the error
estimate on level 3 (correctly) predicts that fewer nodes can achieve the desired relative tolerance of 10−3.

V. Conclusions

Numerical errors must be carefully controlled in PDE-constrained optimization. For example, if numerical
errors dominate the objective gradient, then the optimizer will target these errors rather than improving the
performance of the design.

We have proposed error estimates for the norm of the objective gradient, which can be used to control
accuracy during PDE-constrained optimization. The gradient-norm error estimates are constructed using
the adjoint-weighted residual method. The objective gradient is a function of both the primal and the adjoint
variables, so the error estimates require the solution of two additional dual problems. However, the system
matrices for these dual problems are the Jacobian and transposed Jacobian of the primal residual. Moreover,
the right-hand sides of the dual problems can be approximated using finite-differences. Consequently, most
adjoint-based optimization algorithms have the infrastructure needed to solve such systems.

We verified the error estimates for both the L2- and infinity-norms of the gradient using an inverse-design
objective for the quasi-one-dimensional nozzle. In addition, we proposed a multilevel optimization framework
that incorporates the estimates. In this framework, the computational cost of the error estimates is limited
by computing the estimates at the beginning and end of each optimization cycle only. The framework
was illustrated by recovering a target area using inverse design of a quasi-one-dimensional nozzle. The
estimates were shown to track the analytical gradient-norm error well; thus, the estimates helped minimize
the computational cost of the optimization while controlling numerical errors.

13 of 15

American Institute of Aeronautics and Astronautics



x

er
ro

r 
in

 p
re

ss
ur

e

0.0 0.2 0.4 0.6 0.8 1.0
10-8

10-7

10-6

10-5

10-4

10-3

10-2

level 2 (33 nodes)

level 1 (9 nodes)

level 3 (111 nodes)

level 4 (99 nodes)

(a) error in pressure

x

er
ro

r 
in

 a
re

a

0.0 0.2 0.4 0.6 0.8 1.0
10-8

10-7

10-6

10-5

10-4

10-3

10-2

level 2 (33 nodes)

level 1 (9 nodes)

level 3 (111 nodes)
level 4 (99 nodes)

(b) error in area

Figure 7. Pointwise error between the computed and target pressures (left) and nozzle areas (right) at the
end of each optimization level.

A. Finite-difference-based Right-hand Side

Figures 8(a) and 8(b) verify that the error estimates for the L2-norm and infinity-norm (resp.) of the
gradient remain reliable when the finite-difference approximations (16) and (17) are used in the adjoint
system (13).
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(a) Error and estimate for ‖Gh,p‖2
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Figure 8. Error and error estimate in ‖Gh,p‖2 (left) and ‖Gh,p‖∞ on a sequence of grids using the finite-difference
approximations (16) and (17). Also shown is the difference between the error and error estimate.
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